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In this paper we consider coagulation processes in large but finite systems, and 
study the time-dependent behavior of the (nonequilibrium) fluctuations in the 
cluster size distribution. For this purpose we apply van Kampen's Q-expansion 
to a master equation describing coagulation processes, and derive an 
approximate (Fokker-Ptanck) equation for the probability distribution of the 
fluctuations. First we consider two exactly soluble models, corresponding to the 
choices K(i, j)  = i + j and K(i, j) = 1 for the rate constants in the Fokker-Planck 
equation. For these models and monodisperse initial conditions we calculate the 
probability distribution of the fluctuations and the equal-time and two-time 
correlation functions. For general initial conditions we study the behavior of the 
fluctuations at large cluster sizes, and in the scaling limit. Next we consider, in 
general, homogeneous rate constants, with the property K( i , j )=  a ;K(ai, aj) 
for all a > 0, and we give asymptotic expressions for the equal-time correlation 
functions at large cluster sizes, and in the scaling limit. In the scaling limit we 
find that the fluctuations show relatively simple scaling behavior for all 
homogeneous rate constants K(i, j). 

KEY WORDS: Fluctuations; coagulation; Smoluchowski theory; scaling 
behavior. 

1. I N T R O D U C T I O N  

In  this pape r  we c o n t i n u e  o u r  s tudy  ~1) of the  s tochas t ic  p roper t i es  of the  

f luc tua t ions  in large b u t  finite, spa t ia l ly  h o m o g e n e o u s  c o a g u l a t i n g  systems. 

We  cons ide r  two new, exact ly  soluble ,  n o n g e l l i n g  models ,  where  the 

p roper t i es  of the f luc tua t ions  can  be s tud ied  in grea t  detail .  The  ins ight  
o b t a i n e d  f rom these exact ly  so luble  mode l s  a n d  f rom the gel l ing m o d e l  
cons ide red  in  Ref. 1 t hen  leads  to a p p r o x i m a t e  express ions ,  i nc lud ing  a 
scal ing theory,  for the f l uc tua t ions  in m o r e  genera l  systems. 
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Our method works as follows. We start from a master equation 
describing coagulating processes in finite, spatially homogeneous systems, 
and we assume that these systems are large. In most cases of interest, the 
master equation cannot be solved exactly. To obtain an approximate 
description of the fluctuations, valid if the system is large, we expand the 
master equation in powers of the inverse system size. This technique is 
known as the f2-expansion. (2) In the expansion we retain only the first few 
terms. From the leading terms we recover the deterministic approach to 
coagulation processes (Smoluchowski theory), where the fluctuations are 
not taken into account. The next order yields an approximate ( F o k k e ~  
Planck) description of the fluctuations that is much more tractable than the 
original master equation approach: 

In the stochastic approach to coagulation processes (1'3 6) one considers 
a finite system of volume V containing M basic units, and one constructs a 
master equation for the probability P(m, t) that the number of k-mers, or 
clusters of size k, at time t is given by mk (k = 1, 2,...). The possible states of 
the system are thus described by a vector m =  (ml, m2,... ). If the rate 
constants for the clustering of an i- and a j-mer are given by K U, then the 
master equation for P(m, t) reads 

P(m, t) = (2V) - '  ~ K(/A;j[m;(mj-  6;j) P(m, t)]  (1.1) 
i , j  

where 6~j is a Kronecker delta, and zl;s is a difference operator. The action 
of A;j is defined for an arbitrary function f ( m )  as 

A;jf(m) = f (  {m, + 6ik + 6j, - 6;+s.k } ) - f ( m )  (1.2) 

In the right-hand side of (1.1) we distinguish a gain and a loss term, 
corresponding, respectively, to the first and second terms on the right in 
(1.2). The gain term represents all possible ways to reach the state m from 
states with an i-mer and a j-mer more and an ( i+ j ) -m er  less. The trans- 
ition rates are V-1Kij(mi+ 1)(mj+ 1) if i # j ,  and V 1Kii(mi+2)(mi+ 1) if 
i = j. Similarly, the loss term represents all possible ways to leave the state 
m. We remark that everywhere below we set the density equal to unity, i.e., 
we choose the unit of volume such that M- -  V. 

An important property of the master equation (1.1), which plays a 
central role in this paper, is the conservation law for the total mass, i.e., 

kmk = M (1.3) 
k 

Equation (1.3) simply states that the total number of units in the system is 
fixed and equal to M. As an immediate consequence one finds that clusters 
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of size k > M  cannot  occur, i.e., that  at all times m k = 0  if k > M .  
Nevertheless,  it is convenient  to describe the system in terms of an infinite 
number  of  variables m = (ml ,  m2,...), and let the s u m m a t i o n  indices in (1.1) 
and (1.3) run f rom one to infinity. The reason for this will become clear 
below. 

In the limit of  an infinite system, i.e., if M ~ o% the f luctuations in m k 
can be neglected, and the mas te r  equat ion  (1.1) reduces to a kinetic 
equat ion  for the k-mer  concentra t ions  cg(t) (k = 1, 2,...). More  precisely, in 
the limit M--+ oo the average n u m b e r  of k-mers  increases p ropor t iona l  to 
the system size, (mk(t))~Mc~(t), where the concent ra t ion  c~(t) satisfies 
the macroscopic law: 

~=1 ~. Kucicj_c~ ~ Kkjcj ( k = l , 2 , . . . )  (1.4) 
i + . j = k  j =  1 

Equat ion  (1.4) is known as Smoluchowski ' s  coagula t ion  equation.  ~7-9~ The  
conservat ion law (1.3) for the total  mass  implies the following relat ion for 
the concentra t ions  ck(t): 

~ kck(t )= 1 (1.5) 
k = l  

This relation simply states that  the mass  density in the infinite system is 
equal to unity. Equa t ion  (1.5) can also be verified directly f rom (1.4). 2 

In large but finite systems, there will always be f luctuations a round  the 
average behavior ,  as described by (1.4). In order  to s tudy these f luctuations 
we use van K a m p e n ' s  O-expansion,  ~2) which is an expansion of the mas ter  
equat ion in powers  of  the inverse system size. In our  case the system size is 
M. The basic idea of the O-expans ion  is that  the f luctuations abou t  the 
average behavior  ( m ~ )  are small, of the order  of M ~/2. In  this case we can 
t ransform from the original variables m~ in the mas ter  equat ion to new 
variables ~k defined by 

mk=Mc~(t)+M1/2~ ( k =  1, 2,...) (1.6) 

where c~(t) is the solut ion of the macroscop ic  law (1.4). The  assumpt ion  
that  the f luctuations are of the order  of M then implies that  the scale of  ~ 
remains finite as M - - ,  oo. In the limit M ~ oo, the mas ter  equat ion  (1.1) for 
P(m,  t) reduces to a linear F o k k e r - P l a n c k  equat ion  for the probabi l i ty  

2 From Ref. 1 we know that the conservation law (1.5) breaks down in gelling models if, at 
some finite time t c (gelpoint), there occurs a phase transition, and an "infinite" cluster, or 
gel, is formed. Such complications need not worry us here: in this paper we do not consider 
the post-gel stage (t > to) of gelling models. 
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density H({, t) that the fluctuations at time t have the value { = ( ~ ,  ~2,'")' 
The Fokker-Planck equation for H({, t) is the starting point for our 
calculations in this paper. 

The essence of our method, therefore, is, that we transform from mk to 
new variables ~k, as in (1.6), and study the stochastic properties of r in the 
infinite system, i.e., in the limit M ~ oo. In an infinite system, however, all 
possible cluster sizes are allowed, requiring the use of an infinite number of 
variables ~ (k = 1, 2,...). As a consequence the right-hand side of (1.6) is 
defined for all k >7 1. For  this reason it is convenient to start from a master 
equation in terms of an infinite number of variables mk, so that also the 
left-hand side of (1.6) is defined for all k =  1, 2,.... 

The bulk of this paper is devoted to two new, exactly soluble models, 
in which the properties of the fluctuations can be studied in full detail, at 
least within the Fokker Planck approximation. The rate constants 
corresponding to these models are 

and 

Ko=i+  j (1.7a) 

Ku=  1 (1.7b) 

The first model, K a = i + j ,  is a stylized version of the classical 
polymerization models ARBg of Flory and Stockmayer, (~~ which 
describe the growth of branched polymers. The second example, Kq = 1, can 
be interpreted (12) as a model for the growth of linear polymers. 

After discussing the exactly soluble models K U = i + j and Kij = 1, we 
use the insight obtained from these nongelling models and from the gelling 
model Kij = 0" considered in Ref. 1 to study the fluctuations in more general 
coagulating systems. For  this purpose we consider the large class of rate 
constants K(i, j) that are homogeneous functions of the cluster sizes i and j, 
with the additional property that the behavior of K(i,j) for j>>i is 
described by two exponents # and v, as follows: 

K(ai, aj) = a~K(i, j) (all a > 0) (1.Sa) 

K(i, j) ~ Uj ~ (j>> i;/~ + v = 2) (1.8b) 

The form (1.8) for K(i,j) is quite general. All kernels used in the 
literature ~s'9) have the properties (1.8a), (1.8b) at least for large values of i 
and j. For  physical reasons ~3) the possible values of v and 2 are restricted 
to v~< 1 and 2~<2. Furthermore, it is known ~31 that an exponent 2 >  1 
leads to gelation, whereas for 2 ~< 1 gelation does not occur. Note that the 
exactly soluble models are contained in (1.8) as special cases. 
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For the models K o . = i + j  and Ko.= 1, the macroscopic law, i.e., 
Eq. (1.4), can be solved exactly (~4 16~ for general initial conditions ck(0) 
(k = 1, 2,...). Some relevant results for the solutions ck(t) of (1.4) with rate 
constants K o. = i + j or Kr = 1 are summarized in Appendix A. Much less is 
known concerning the solutions of the master equation with rate constants 
(1.7a) or (1.7b). In both models, the solution P(m, t) of the master 
equation (1.1) is known only for monodisperse initial conditions, i.e., if 
mk(O) = M6kl. The solution for K o. = i + j has been found by Lushnikov ~51 
and the case K~ = 1 has been solved by Bayewitz eta/. (4) For general initial 
conditions the solution of Eq. (1.1) is not known. Moreover, even for 
monodisperse initial conditions many interesting properties remain 
undetermined. Examples of such unknown quantities are the two-time 
correlation functions ((mi(t~) mj(t~))) and, for K0-- 1, the average number 
of k-mers (mk)  and the equal-time correlation functions or covariances 
((mi(t) mj(t) )). 

For homogeneous kernels, different from (1.7a), (1.7b) or Ku= ~, 
neither the master equation nor the macroscopic law can be solved exactly. 
However, it is possible to study the asymptotic behavior of the solutions 
c~(t) of Smoluchowski's equation in various limits. ~13'17'18/ Some relevant 
results from the literature are given in Appendix A. 

The plan of this paper is as follows. In Section 2 we discuss the g2- 
expansion of the master equation and we derive equations for the averages 
and covariances of the fluctuations. Then we consider the .first exactly 
soluble model, K o = i + j. Monodisperse initial conditions are the subject of 
Section 3, and general initial conditions that of Section 4. The second 
exactly soluble model, Ko.= 1, is treated in Section 5 for monodisperse 
initial conditions, and in Section 6 for general initial conditions. Section 7 is 
devoted to homogeneous kernels: the main result of this section is a scaling 
theory for the fluctuations in gelling and nongelling systems. In Section 8 
we summarize and discuss our results. Relevant results from the literature 
are summarized in Appendix A. Appendix B is a technical appendix. 

2. T H E  Q - E X P A N S I O N  OF THE M A S T E R  E Q U A T I O N  

The basic idea of the Q-expansion has been sketched around Eq. (1.6): 
we transform from the occupation numbers mk in (1.1) to new variables ~k, 
and we replace the probability distribution P(m, t) with the probability dis- 
tribution H(r t) for the new variables { =  (41, ~2,..-)- Two points require 
further attention, namely the transformation of the time derivative P(m, t) 
in (1.1) and the transformation of A,j. These points will be discussed next. 

First we consider the transformation of the time derivative in (1.!). We 
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note that P(m, t) is calculated with m~ constant. According to (1.6), 
constant mk implies that 

d~k/dt = --M~/2fk(t ) (k = 1, 2,...) (2.1) 

It follows that the time derivative P(m, t), expressed in terms of the new 
variables ~, assumes the form 

oo oo O H  OIl+ OIl d~k OH M1/2 
Ot ~ 0 ~  dt - Ot )2 bk(t) o~---- k (2.2) 

= 1  k = l  

Second, the difference operator A U in (1.2) can be written as a differential 
operator in terms of the variables {k: 

A 0 = exp (6~k + 3jk -- 6~+j.e) -- 1 
k 1 

= exp(M-l/2Du) - 1 (2.3a) 

where Dgj is defined as 

f 0 (2.3b1 DU =-- (•ik Ji- Ojk --  6 i+j ,k )  O~ k 
k = l  

For large values of the system size M, we can expand the exponential in 
(2.3a) in a Taylor series as follows: 

Ao.=M-'/2D~j+�89 ... ( M ~  oo) (2.4) 

For  our purposes it suffices to take into account only the first two terms on 
the right in (2.4). The contributions of higher order terms are negligibly 
small as M ~ oo. 

We are now in a position to carry out the expansion of the master 
equation (1.1) in powers of M 1/2. Substitution into (1.1) of Eq. (1.6) for 
mk and Eqs. (2.2) and (2.4) for P(m, t) and A~ yields the following result 
for the probability distribution H({, t) as M--* oo: 

f OH OHot MI/2 Ck(t) O~k 
k = l  

i,j 

+ 1 ~ Ku[D~(cir + cj~,) + �89 2] H + O(M-1/2) (2.5) 
4J 
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In the derivation of Eq. (2.5) we arranged the terms on the right-hand side 
according to their dependence on the system size M. 

Comparison of the various M orders in (2.5) yields, first, the 
macroscopic law for ck(t) and, second, an equation for H({, t). We start 
with the leading terms in (2.5), which are of order M 1/2. The macroscopic 
law is obtained if we require that the coefficients of 8H/8~k vanish for all 
k = 1, 2,...: 

~(t)  = -�89 ~ K~cicj(3ik + 6jk -- 6i+ j,k) (2.6) 
i , j  

Summation over the Kronecker delta shows that Eq. (2.6) is identical to 
Smoluchowski's equation (1.4). Thus, we have derived eq. (1.4), for general 
kernels Kij, as the dominant term in the expansion of the master equation 
(1.1). As the initial condition for Eq. (2.6), or (1.4), we choose 

ck(O) = m~(O)/M (k = 1, 2,...) (2.7a) 

This choice for ck(0) is convenient, since it implies that the fluctuations 
vanish at t = 0, i.e., 

~k(0) = 0 ( k =  1, 2,...) (2.7b) 

Equation (2.7b) is an immediate consequence of (1.6). 
From the next order in (2.5), which are the terms of the order of unity, 

we find an equation for the probability distribution H({, t): 

8H 
8t = �89 ~ K~j[D,j(c,~j + cj~) + �89 2 ] H (2.8) 

i , j  

The higher order terms in (2.5) are neglected. From the choice (2.7b) for 
Ck(0) we infer that the initial condition for Eq. (2.8) is given by 

H({, 0) = 6({) (2.9) 

Furthermore, we note that Eq. (2.8), with D U given by (2.3b), has the form 
of a multivariate linear Fokker-Planck equation,(2) with an infinite number 
of variables: 

0 .  0 ~ Bk~(t)8~ II (2.10) 8---[ = - Z  Akj(t) ~ (~jH) + Z 0~, 
k , j  k , l  

and matrices Akj(t) and Bkz(t) given by 

Akj(t) = --~, Ko.e~(fik + 6sk -- 3~+ j.~) (2. l la) 
i 

Bkt(t)=l~',Kijcicj(bik+fjk--bi+j,k)(bil+3jl--6i+j,z) (2.11b) 
i , j  
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This can be seen by inserting the explicit form (2.3b) of the operator D~ 
into (2.8), and replacing the factor (ci~s+cj~i)  by 2et~j, which is allowed 
due to the symmetry with respect to i and j. 

From the Fokker-Planck equation (2.10) one can readily derive 
equations for the average fluctuations (~m) and the covariances ((~m ~n ))' 
The averages and covariances are defined, respectively, as 

(~m(t)) = f d~ ~mH({, t) (2.12a) 

and 

((~m(t) in(t))) = (~m(t) in( t))  -- (~m(l ) ) (~n( t ) )  (2.12b) 

An equation for (~m(t))  is obtained if we multiply Eq. (2.10) with ~m and 
integrate over all {. The result shows that the averages (~m) obey a set of 
linear differential equations as follows: 

d 
d5 ( ~m ) = 2 Amj(t)( ~j) (2.13) 

J 

The initial condition for Eq. (2.13) is (~m(0)) = 0. This follows from (2.7b). 
As an immediate consequence, one finds that the average fluctuations 
vanish for all t ~> 0: 

(~m(t)) = 0  (m = 1, 2,...) (2.14) 

Hence, the covariances ((~m~n)) in (2.12b) are equal to (~m~n), and can 
be calculated by multiplying Eq. (2.10) with ~m~n and integrating over all 
{. As a result, one finds the following set of linear, inhomogeneous differen- 
tial equations: 

d 
dt ( ( ~ m ~ " ) ) = ~ ( A " s ( ( ~ m ~ S ) ) + A m s ( ( ~ n ~ S ) ) ) + B m n  (2.15) 

J 

which are to be solved with the initial condition ((~m(0) 3,(0))) =0.  We 
remark that the solutions of Eq. (2.15) play an important role in this paper, 
for various reasons. One reason is that, as we shall see below, the 
probability distribution H({, t) in (2.10) is completely determined by 

((~.,~n)). 
A drastic simplification of Eq. (2.15) occurs if we transform from the 

covariances ((~m~.)) to a new variable em.(t), which is defined as 

e.m(t) =- (( ~m(t) ~.(t)  )) -- 6m.C.(t) (2.16) 
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In Ref. 1 it was found that this new variable is related in a simple way to 
the factorial cumulants [m~m~] of the occupation numbers m, since 
[m,mt]~ ,Mekt  as M ~ o o .  In terms of em,(t), Eq.(2.15) takes the 
following form: 

~mn(t) = ~ (A,jemj + Amjen/) -- Kmnc~cn (2.17) 
J 

Equation (2.17) is also linear and inhomogeneous, but the inhomogeneity 
in (2.17) is much simpler than in (2.15). The initial condition for (2.17) is 
emn(O) = --(5,,,,,C~(0). 

Finally we discuss the implications of the conservation law (1.3) for 
the fluctuations ~k (k=  1, 2,...). In combination with the conservation law 
(1.5) for the concentrations ck(t) and the definition (1.6) of ~ ,  Eq. (1.3) 
implies that 

k~k=0  (2.18) 
k 1 

This relation between the fluctuations ~-k can also be verified using the 
Fokker Planck equation (2.10). The proof is elementary, and is omitted 
here. As a consequence of (2.18), we find the following relation between the 
covariances (( ~,, ~ )), valid for all m/> 1: 

n ((~,,, ~.,)) = 0 (2.19a) 
n = l  

Similarly, a restriction on the factorial cumulants emn(t) is found if we 
combine (2.19a) with (2.16). The result is 

• nem.(t)=-mCm(t) (2.19b) 
n = l  

Conversely, it is also possible to derive (2.18) from (2.19a) or (2.19b). To 
see this, we multiply (2.19a) with m and sum over all m. The result shows 
that ((~_,mm~m)2)=O, which is possible only if (2.18) holds. Thus, 
Eqs. (2.18), (2,1%), and (2.19b) can be interpreted as different but 
equivalent representations of the conservation law for the total mass, 
expressed in terms of the fluctuations {. 

3. K i j= i+ j :  M O N O D I S P E R S E  I N I T I A L  C O N D I T I O N S  

In this section we study the fluctuations for the special case of a 
monodisperse initial distribution, corresponding to m~(0)=M3kl or 
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c~(0) = 6kj. For such initial conditions many properties of the fluctuations 
can be studied in detail. This section is subdivided into three parts, 
devoted, respectively, to (1) the covariances ((~m(t)~n(t))), (2) the 
probability distribution H(~,t), and (3) the (two-time) correlation 
functions Knm(t2, t~)-- ((~m(tl) (n(t2))). 

3.1. The Covariances 

The covariances can be calculated from Eq. (2.15) or, equivalently, 
from (2.17) for the factorial cumulants emn(t ). For the model Ki;=i+j ,  
Eq. (2.17) takes the form 

Cmn= E ( i + j )  Ciemj+ E ( i + j )  c ien j - -ncnEemj  
i+j -n  i+j=m j 

- m c m ~  en j - (n+m)em,  Mo-- 2em, (3.1) 
J 

where Mo(t) is the zeroth moment of c~(t), which is given in (A.2) and 
(A.3). Since we assume that initially the system is monodisperse, Eq. (3.1) 
has to be solved subject to the initial condition 

emn( O ) = --t~ mnen( O ) = --(~ ml (~ nl (3.2) 

In Section 4 we solve (3.1) for general initial conditions. From this general 
result one finds that the solution for monodisperse initial conditions has a 
very simple form, 

em,(t) = --e-2tmnem(t) c,(t) (3.3) 

where ck(t) is given in (A.11). It can readily be checked that em,(t ) in (3.3) 
satisfies both the initial condition (3.2) and the kinetic equation (3.1). In 
verifying (3.1) it is convenient to use Smoluchowski's equation (A.1) and 
the mass conservation law (1.5). 

As an immediate consequence of (3.3) and the definition (2.16) of emn , 
one finds the following result for the covariances ((~m~n)): 

(( ~m(t) ~n(t) )) = 6mnen(t) -- e-2tmncm(t) cn(t) (3.4) 

The relation (2.19a) between the covariances, which is a result of the 
conservation law for the total mass, can readily be verified with the use of 
Eq. (A.3) for the second moment, i.e., M2(t)=e 2t. The negativity of 
( (~m~))  in (3.4) for n-Cm is a reflection of the conservation law 
Zk k~k = 0. The interpretation is simply that if, at some moment t > 0, the 
number of m-mers exceeds the average, i.e., if ~m(t)> 0, then most likely 
there will be fewer n-mers (~n < 0). 
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3.2. The  Probab i l i t y  D i s t r i b u t i o n  

The result (3.4) for the covariances can be used to calculate the 
probability distribution H({, t), which satisfies the linear Fokker-Planck 
equation (2.10), with the matrices Akj and B~1 given by (2.11). From the 
literature (2'19) we recall that the solution of a linear Fokker-Planck 
equation has the form of a multivariate Gaussian distribution with zero 
average and covariance matrix ((~m ~n))' For the special case of the model 
K,j = i + j with monodisperse initial conditions, the probability distribution 
H({, t) can be calculated explicitly. (2~ The result is 

where g(x; a 2) is a one-dimensional Gaussian distribution with zero mean 
and variance a 2, i.e., 

g(x; a 2) = (2rc~ 2) -1/2 e x p ( -  xZ/2a 2) (3.6) 

In the direction {(0)= (1, 2, 3,...), the Gaussian form has degenerated to a 
delta function as a result of the conservation law (2.18). The prefactor in 
(3.5) guarantees that H({, t) is properly normalized. Comparison of (3.5) 
with Lushnikov's exact solution of the master equation (5) shows that both 
expressions have the same form: they consist of a product of independent 
Poisson distributions multiplied with a delta function representing the mass 
conservation law. 

3.3. The Corre lat ion  F u n c t i o n s  

The correlation functions xn,,(t2, t~) are defined as 

K.m(t2, t , ) -  ((4m(tl)~.(t2))) 

(t2>>.tl)O) (3.7) 

As a result of (2.14), the second term on the right in (3.7) vanishes, so that 
in our case, ~nm(t2, t~) is also equal to (~m(t~) ~n(t2)). The calculation of 
~c,,,(t2, tl) consists of two steps. First, one calculates the conditional 
average ~n(t2) of in at time t2 for a given value ~(t~) of the fluctuations at 
time tl. The second step is to multiply ~,(t2) with ~m(tl) and to average the 
result over all possible values of ~(tl). 

The calculation of the conditional averages ~,(t2) for given initial fluc- 
tuations ~(t~) proceeds as follows. From Eq. (2.13) it follows for the model 
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Ko=i+ j that the averages ~n(t) satisfy the following set of differential 
equations: 

d - -  
- ' ~ n  = 2 (i+j) ci~j-ncn ~ ~j-~n(l+nMo) (3.8) 

i + j =  n j - -  1 

In the derivation of (3.8) we have used the conservation law (2.18). 
Equation (3.8) can be solved with the use of the generating function g(x, t) 
of ~,(t), which is defined as 

Z(x, t) = ~ ~,(t)(e "x-  1) (3.9) 
n - - 1  

Multiplication of (3.8) with (e " ~ -  1) and summation over all n yields a 
partial differential equation for Z(x, t): 

8 Z OF. ~0Z 
-~- =,~ ~xx +.u ~xx- Z (3.10) 

The generating function F(x, t) of ck(t ) has been defined in (A.4). 
In order to solve Eq. (3.10), we transform from Z(x, t) to a new 

function W(z, t): 

W(z, t) = Z(X, t); z=-F(x, t ) - x  (3.11) 

and we find the following differential equation for W(z, t): 

~F 
~[l~  t - i ]  1 (3.12) 

In the derivation of (3.12) we have used Eq. (A.6) for F(x, t) and the 
expression (A.8) for OF/~x in terms of z and t. The solution of (3.12) is 
readily found to be 

W(z, t) = W(z, tl)Eu'(z) - e t l ] /Eu ' ( z ) -  e q  (3.13) 

This result makes it possible to express the generating function Z(x, t) in 
terms of its initial value ~(x, t~). To see this, we introduce the point x~, 
which is mapped at time tl onto the same value of z as (x, t), i.e., 

F(xl, t l ) -  xl =- z= F(x, t ) -  x (3.14) 

With this definition for x1, one finds from (3.11) and (3.13) the following 
result for Z(x, t): 

g(x, t )=  W(z, tl)[u'(z)--et']/Eu'(z)-e t] 
(3.15) 

= Z(xl, tl)Eu'(z) - et']/[u'(z) - e t] 
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An explicit expression for x 1 as a function of x, t, and t~ can be obtained if 
we use Eq. (A.7) for F(x, t): 

Xl(X , t, t , )=  x + F(xl ,  t l ) -  F(x, t) 
(3.16) 

= x +  (e ' - ' ~ -  1) F(x, t) 

Equation (3.15) with x a given by (3.16) represents the exact solution for the 
generating function )~(x, t) of the conditional averages ~n(t). 

The relation (3.9) between )~(x, t) and ~ ( t )  can be inverted as follows. 
The averages ~,(t) are the coefficients of e "~ in the generating function 
Z(x, t). Hence, they can be written in the form of a contour integral in the 
comptex plane: 

~ ( t ) = 2 ~  i -fi-y-;-TZ(x, t) (3.17) 

where we have defined y = eL The path of integration in (3.17) circles the 
origin in the complex y-plane once, and counterclockwise. Substitution into 
(3.17) of )~(x, t) in (3.15) and use of the definition (3.9) shows that ~,(t) 
depends linearly on the initial value {(t~): 

~ n ( t )  = ~ Ynl(  t, t l)  ~/(tl) 
l=1 

where Y,l(t, tl) is defined as 

l e dy lX  1 
to,It, t , ) =  ; = + - = - r  (e -- 1) 

z ~ I  J y -  ' - 

u ' ( z ) - e  ~1 
u'(z)-e' 

(3.18) 

(3.19) 

The matrix Ym(t, t~) is usually called the evolution matrix of the problem 
(3.8). The result (3.19) is valid for general initial conditions. 

An explicit expression for Ynt(t, tl) can be obtained for monodisperse 
initial conditions. For this purpose we transform from the variable y = e x in 
(3.19) to a new variable f,  whe re f i s  the generating function (A.4) of c~(t). 
As a first step, we use the relation (A.8) between u'(z) and Of/#x to write 
Ynt(t, tl) in the following form: 

Ynt(t, t l ) = - - g - - t e X ' - l )  e t ~ - t + ( 1 - e  '1 
2~ziYy~+l 

e tl ' ; dy lxl 
= - ( 1 - e ' l - ' ) n c , ( t ) + - ~ - ~ i y - ~ e  

1--e  tl t s dfelx 1 
q ?~-~ j~-~ (3.20) 
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The variable y in (3.20) can be expressed in terms of f with the use of 
(A.9b). The result is 

y = e '+ ~f exp( - ze~ c) (3.21) 

where we have introduced an auxiliary variable z = - 1 -  e-q  Similarly, the 
factor e ~ in (3.20) can be expressed in terms o f f  with the use of (3.16): 

exp x 1 = y exp{ (z -  Zl)[(ex p t ) f -  1 ] } (3.22) 

We have defined zl - 1 - e  ~. As a result of (3.21) and (3.22) one finds for 
the first integral on the right in (3.20) 

1 ~ dy exp(/xl) 
2~i 

(nz_izl)n I-1 
= l ( z - ~ l )  

(n - l)! 
exp(lr i - nz) (3.23a) 

and similarly, for the second integral in (3.20), 

1 d._f exp(/xl ) 
27zi ~ y 

(nZ - -  I'C 1 ) n - l -  1 
= (1 - z) exp(/zl - nz) (3.23b) 

( n - l -  1)! 

Substitution into (3.20) of the results (3.23a), (3.23b) finally gives the 
desired explicit expression for the evolution matrix Y,t(t, t,): 

F (nz--l'Cl)"-I 1 ] T--T 1 _-cn ( t )+(1 - z )  exp(lrl--nz) (3.24) Y'a(t' t l ) = n  1--z1 [_ (n-l)!  

Note that for t~tl, the matrix Ynt reduces to the identity matrix: 
Ynt(tl, tl)=6nt. This completes the first step in the calculation of 

lEnm(t 2 , tl). 
The second step in the calculation of the correlation functions is to 

multiply (3.18) with ~m(tl) and to average over all possible values of ~(tl). 
The result is 

Knm(t2, t l ) =  ~ Ynl(t2, tl)((~l(/1) ~m(tl))) 
l=1 

= Ynm(t2, tl) Cm(tl)--e-2tlmCm(tl) ~ Y~(t2, tl)lct(tl) 
l=1 

(3.25) 
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In the derivation of (3.25) we used the result (3.4) for ((~t~,~)). The sum 
on the right-hand side of (3.25) can be calculated with the use of the 
integral representation (3.19) of Y.t: 

1 c~ dy [~F ] u ' ( z ) - e  tl 
Y" ' ( t z ' t l ) ICt( t l )=~i~iJ-~ ~x ( x l ' t l ) - I  u'(z) e t2 

/=1  

= e  1 2__  (x, t 2 ) - I  

= e tl -'2ncn(t2) (3.26) 

In the second step of (3.26) we used the relation (A.8) for ~F/~x. In the 
third step we used the definition (A.4) of F(x, t). Substitution of (3.26) into 
(3.25) gives the following expression for the correlation functions 
tgnm(t2, tl): 

~C,m(t2, t l ) =  Ynm(t2, tl) Cm(tl)--e-(~l+~2~mncm(tl) G(t2) (3.27) 

Clearly, Eq. (3.27) reduces to the previous result (3.4) if t2 ~ t~. 
As an example, we consider the long-time behavior (t2 ~ oe) of the 

autocorrelation functions Kmm(t2, t l ) .  For large values of t2, the second 
term on the right-hand side of (3.27) is of relative order e -'2, and can be 
neglected. The long-time behavior of the first term on the right in (3.27) 
can be determined from (3.24). Straightforward calculation shows that 

G~,~(t2, tl)~[--l+m!em~I/mm(1--'Cl)]mc,~(tl)cm(t2) (t2 ~ oe) (3.28) 

From the explicit form (A.11) of Cm(t2) it follows that all autocorrelation 
functions Xmm(t2, t~) fall off exponentially as a function of t2, so that (3.28) 
can be written in the form 

G,m(t2, t l )~r(m,  tl)e -'2 ( t 2 ~  oe) (3.29) 

The prefactor o-(m, tl) has a different sign for different combinations of m 
and tl. This can be seen from (3.28). Analysis of the factor [ . . . ]  in (3.28) 
shows that, for a fixed value of m, ~(m, tl) is positive if t~ is sufficiently 
large (tl > To) and negative if tl is smaU (tl < To). The crossover time T o 
depends on the cluster size m, and for large m is given by To(m)~ log m. 

4. K i j= i+ j :  G E N E R A L  I N I T I A L  C O N D I T I O N S  

Next we study the fluctuations in the model K~= i + j  for general 
initial conditions. Our purpose is to gain insight into the universal proper- 
ties of the fluctuations that apply for all initial distributions ink(0 ) 

822/49/5-6-5 
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(k = 1, 2,...). To this end, we calculate in Section 4.1 an exact expression for 
the covariances ((~m ~n)) in terms of their generating function. This result 
is used in the Sections 4.2 and 4.3 to calculate the asymptotic behavior of 
the covariances for large cluster sizes (m, n ~ oe ), and in the scaling limit. 

4.1. The  Exact  S o l u t i o n  

We start from Eq. (3.1) for the factorial cumulants emn(t ) with a 
general initial condition 

em,(O) = --6m, C,(0) (4.1) 

Equation (3.1) can be solved with the use of generating functions. To show 
this, we introduce the generating function 

h(x, y, t) - ~ em~(t) e mx +ny 
m,rl  

and, related to h(x, y, t), a second function H(x,  y, t): 

(4.2a) 

H(x,  y, t)=-- ~ em,(t)(e m x -  1)(e " y -  1) 
m , n  

= h(x, y, t) - h(x, O, t) - h(O, y, t) + h(O, O, t) (4.2b) 

Our aim is to derive an equation for H(x,  y, t). For this purpose it is 
convenient to derive an equation for h(x, y, t) first. Multiplication of 
Eq. (3.1) with e mx+ny and summation over all m and n yields 

Oh F(x, t) Oh Oh 
Ot -~x -- F(y,  t) -~y 

OF 
= O--7(x, t ) [ h - h ( O ,  y, t)]  

c?F 
+--z--(Y, t ) [ h - h ( x ,  O, t)3 - 2 h  

oy 
(4.3) 

where F(x, t) is defined in (A.4). From (4.3) one can readily obtain 
equations for h(x, O, t), h(O, y, t), and h(0, 0, t) by putting x = 0, or y = 0, 
or x = y = 0. A suitable combination of these equations yields the following 
result for H(x,  y, t) in (4.2b): 

a--7-- Ox F(y , t ) - -~y= (x , t )+-~- f i y ( y , t ) -2  H (4.4a) 
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The initial condition for Eq. (4.4a) is 

H(x, y, O) = v(x) + v(y) - v(x + y) (4.4b) 

where we have defined F(x, O) - v(x). 
The differential equation (4.4) for H(x, y, t) can be solved as follows. 

We transform the variables (x, y) to new variables (Zl, z2): 

z~  - F ( x ,  t )  - x ;  z ~  - F ( y ,  t )  - y (4.5a) 

and we replace H(x, y, t) by a new function W(z~, z2, t), i.e., 

W(zl ,  z2, t) - H(x, y, t) (4.5b) 

Substitution of (4.5) into (4.4a) and use of the differential equation (A.6) 
for F(x, t) yields the following equation for W(Zl, z2, t): 

a [log W(zl ,  z2, t)] aF  aF  at = ~ x  (x, t )+  ~---fy (y, 0 - - 2  

= [ u ' ( z ~ ) e - ' - l ] - l + [ u ' ( z 2 ) e  ' - 1 ]  -~ (4.6) 

In the second step we used Eq. (A.8) for 3Flax. Integration of (4.6) is 
elementary. The result is 

W(z1, z2, /2)= W(Zl, z2, O) 
U'(Zl)--I U'(Z2)--I 
u ' ( z l ) - e '  u ' ( zz ) - -e '  

(4.7) 

As a consequence of (4.5b) we find for H(x, y, t) 

H(x, y, t) = H(x  1, Yl, O) 
u'(zl)-I u'(z2)-I 
u ' ( z l ) - e  t u ' ( z2 ) - e t  

(4.8) 

where x l = x l ( x , t , O  ) is defined by (3.14) or (3.16), and y l = x l ( y , t , O ) .  
Equation (4.8), in combination with the initial value H(x, y, 0) in (4.4b), 
represents the exact solution for the covariances ((~m ~n ~ in terms of their 
generating function. 

We add two remarks. The first is that, for monodisperse initial con- 
ditions, Eq. (4.8) can be inverted to yield Eq. (3.3) for emn(t ). This can be 
seen from (4.4b), where for monodisperse initial conditions v (x )=  e x -  1. 
Hence 

H(x , ,  y , ,  O)= - ( e  x~-  1)(e y l -  1) (4.9a) 
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Furthermore, it follows from (A.8) for OF/Ox that 

E x,xl u ' ( z l ) -  1 = OF , 0 ) -  1 = (e x l -  1) -1 (4.9b) 

Combination of (4.8) with (4.9a), (4.9b), and (A.8) gives 

H(x, y , t )=  - e  2t[ oF 1 ] [  OF ] ~x (x, t ) -  jkt?y (y, t ) -  1 (4.10) 

and inversion of (4.10) immediately yields (3.3) for emn(t ). The second 
remark is that, for our purposes, Eq. (4.8) is not the most convenient form 
for H(x, y, t). An alternative representation that will be used below can be 
obtained from (4.8) if we use Eq. (A.8) for aF/ax: 

H(x, y , t )=H(Xl ,  y l , 0 ) L e -  +z-~-s ) e - '+Z-~y(y , t )  (4.11) 

The value of z is again given by z = 1 - e - ' .  

4.2. Fluctuations at Large Cluster Sizes (m, n - ,  ~) 

In order to calculate the asymptotic behavior of emn(t ) at large cluster 
sizes, we consider first an exact expression for em,,(t ) in the form of a 
double contour integral in the complex plane: 

f dwl r dw 2 
emn(t)= ~ 7 , ,  H(x, y, t) (4.12) 

where wl -- e x and w2 - e y. The integration paths in (4.12) circle the origin 
in the wl and w2 planes once in the counterclockwise direction. 

The asymptotic behavior of emn for large values of m and n can be 
obtained from (4.12) with the use of the saddlepoint method. From (A.7) 
and (A.12) we know that the function x(F, t), or, equivalently, w~(F, t), has 
a saddle point at Fs(t ) = e-'u(zs), where the value of zs(t) is determined by 
(A.12). The corresponding values of x(F, t) and wl(F, t) at the saddle point 
are x,( t )=e 'u(zs)-Zs and w,(t)=e xs~'). Obviously, y(F, t) and w2(F, t) 
also have a saddle point at F =  Fs(t). 

The saddlepoint method works as follows. We calculate the w~ integral 
in (4.12) along the contour w~ = w~(t) e i~~ with - ~  < ~01 ~< z~. Similarly, the 
w 2 integral is calculated along the circle wz = ws(t)e ~2, with - ~  < q~2 ~< ~. 
With this choice for the contours in (4.12), the integrand H(x, y, t) is 
sharply peaked about the point (x, y) = (xs(t), xs(t)) if m and n are large. 
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Consequently, one finds from (4.12), with H(x, y, t) given by (4.11), that 
for large cluster sizes 

em.(t) ~ H(xS~, xs~, O) ~ 

Xs dwl s dw2 OF OF 
j 7 Tx ' ) 

r2S(x~, x{, O) mnem(t ) cn(t) (m, n -+ oo) (4.13) 

where x~(t)=-x~(x,, t, 0). In the second step of (4.13) we used the definition 
(A.4) of F(x, t). The asymptotic behavior of the concentrations e~(t) as 
k--+ Go is given in (A.14). 

4.3. The  Sca l ing  L imi t  

Next we show that the covariances ((~m~n)) approach a scale- 
&variant form, independent of the initial conditions, in the scaling limit. The 
scaling limit is the limit where the average cluster size diverges: s ( t )~  oo 
and m, n ~ oo with m/s(t) and n/s(t) fixed. As a definition of the "average 
cluster size" we choose 

s(t) =- M2(t)/Ml(t) = M2(0 ) e 2t (4.14) 

but different choices for s(t) lead to qualitatively the same results. The 
scaling behavior of the macroscopic solution c~(t) is summarized in 
Appendix A. 

We start again from H(x, y, t) in the form (4.11). Before considering 
((~m~n)) itself, we show first that the generating function H(x, y, t) 
approaches a scale-invariant form, independent of the initial conditions. 
From Appendix A we know that the generating function (OF/Ox)(x, t) in 
(4.11), and hence also (SF/Oy)(y, t), approaches a scaling form in the 
scaling limit (S) as follows: 

OF (x, t) s ~(pl); p , -  -xs(t) 
0x 

(4.15) 
8F 

(y, t) s ,  ~(p2); p2- -ys(t) 
Oy 

where O(P) is defined in (A.16), i.e., O(p)= (1 +2p)  1/2. Furthermore, the 
scaling behavior of Xl and Yl in (4.11) follows from (3.16) and (A.15) as 

S xl , - [M2(0) s ( t ) ] \  1/21-(1 + 2pl) 1/2 -- 1 ] 
(4.16) 

S Yl ) - [m2(O)s( t ) ]  1/2[(1+202)l/z--1] 



946 van Dongen 

Thus, in the scaling limit, x~ vanishes proportional to s(t) - m ,  albeit non- 
uniformly in the scaling variable pl = -xs ( t ) .  Similarly, Yl vanishes non- 
uniformly in P2. It follows that the factor H(Xl,  Yl, 0) in (4.11) vanishes as 
s(t) ~ 0% since we know from (4.4b) that H(0, 0, 0 )=0 .  Expansion of 
H(Xl, Yl, 0) about Xl = Yl = 0 gives 

H(x l ,  Yl, 0) s __lyt(O)XlYl-~. _ M 2 ( O ) x i y  1 (4.17) 

The scaling behavior of H(x, y, t) is obtained if we substitute the results 
(4.15) (4.17) into Eq. (4.11): 

H ( x , y , t )  s - s ( t )  l [ 1 - O ( p x ) ] [ 1 - O ( p 2 ) ]  (4.18) 

Clearly this result for H(x, y, t) is independent of the initial conditions. 
As an immediate consequence of (4.18) one finds that em,(t) also 

approaches a scale-invariant form as s ( t ) ~  oo. This can be seen by 
substituting (4.18) into (4.12). The result is 

S 1 (_..~._1 ~2 ~ awl dw2 
e, . . ( t )  , - - s ( t )  \27riJ .J WT+I ~W---~ [l-i//(Dl)ll-1-O(D2)l 

s , _ s ( t ) _ l  mnem(t) c,(t) (4.19) 

In the second step of (4.19) we used Eq. (4.15) for OF/Ox and OF/Oy. An 
alternative representation of emn(t ) can be obtained from the scaling 
behavior (A.17) of c~(t). One finds that, in the scaling limit, em,(t ) can be 
described by a scaling function q~(rl, r2) as follows: 

em,(t) s s(t)-3 q~(rl, r2) (4.20a) 

where r~ =- m/s(t), r 2 - n/s(t), and ~( r l ,  r2) is defined as 

~(r l ,  r2) - -rlrzq)(r~) q~(r2) (4.20b) 

The explicit form of q)(r) is given in (A.17b). 
The scaling behavior of the covariances ((~m~,)) follows from (4.20) 

and (2.16) if, in addition, we replace the Kronecker delta in (2.16) by 
s(t) -1 6(r I - r2). The result is 

((~m~,)} S s(t) 3 7t(rl, r2) (4.21a) 

where ~U(r 1, r2) is related to ~(r l ,  r2) by 

~(r , ,  r2) = 6(rl - r2) ~o(rl) + O(rl, r2) (4.21b) 
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Equations (4.20) and (4.21) represent the main result of this section. They 
show very clearly that, at least for the model K i j = i + j ,  the factorial 
cumulants emn(t) and the cumulants ( (~m~))  approach a simple, scale- 
invariant form in the scaling limit that does not depend on the details of 
the initial distribution. 

5. K i j = l :  M O N O D I S P E R S E  I N I T I A L  C O N D I T I O N S  

Next we discuss the second exactly solvable example of this paper, 
which is the model K,j= 1. In this section we restrict ourselves to 
monodisperse initial conditions, mk(0)= M6k~, and we consider, respec- 
tively, the covariances ( (~m( t )~ , ( t ) ) )  (Section5.1), the probability dis- 
tribution H(r t) (Section 5.2), and the correlation functions 
((~m(tl) ~n(t2))) (Section 3). Some results concerning the macroscopic law 
for this model are summarized in Appendix A. 

5.1. The  Covar iances  

We start again from Eq. (2.17) for the factorial cumulants em,,(t ). In 
the case of the model Kij = 1, Eq. (2.17) reads 

ore,,= ~ c,e,,j+ ~ cie,ni 
i + j - - m  i + j = n  

- cn ~ emj - Cm ~, e,,j -- 2Moemn -- CmC . (5.1) 
J J 

where Mo(t)  is the zeroth moment of ck(t), which is given below Eq. (A.23). 
The initial condition for Eq. (5.1) is emn(O)=--6m16nl. The solution of 
(5.1) corresponding to this initial condition has the form 

e m n ( t ) = [ A ( t ) + B ( t ) ( m + n ) + C ( t ) m n ] c m ( t ) c n ( t )  (5.2) 

where A(t), B(t), and C(t) are given by 

A(t )  = -~ t (4  + t)(1 + t)/(2 + t) z 

B(t)  = �89 + t)/(2 + 02 

C(t) = -4 (3  + t)/(2 + 02 

(5.3a) 

(5.3b) 

(5.3c) 

It can readily be verified that emn(t ) in (5.2) and (5.3) satisfies Eq. (5.1). In 
these calculations it is convenient to use the explicit form (A.23) of ck(t). 
Furthermore, we note that the solution given in (5.2) and (5.3) satisfies the 
initial condition, since emn(O ) = C(O)(~ml(~nl, with C(0 )=  -1 .  As a remark, 
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we add that it is also possible to solve Eq. (5.1) constructively. This will be 
done in Section 6 for general initial conditions. From these results one finds 
(5.2) and (5.3) as a special case if the initial distribution is monodisperse. 

As an immediate consequence of the definition (2.16) of emn(t), one 
finds the following result for the covariances ((~m ~n)): 

((~m(t) ~.(t) )) 

=6m, C,(t)+[A(t)+B(t)(m+n)+C(t)mn]cm(t)en(t) (5.4) 

The property (2.19a), which is a consequence of the conservation law 
Z ,  n~, = 0, can readily be verified from (5.4) if one uses Eq. (A.22) for the 
second moment M2(t), i.e., M2(t )= 1 + t, and the explicit form (5.3) of 
A(t), B(t), and C(t). 

The result (5.2) or (5.4) for the covariances in the model K o. = 1 differs 
notably from the corresponding result (3.3) for the model Ku = i + j .  Apart 
from a term proportional to mncmc,, Eq. (5.2) contains additional terms, 
with coefficients A(t) and B(t). The relative importance of these terms is 
different in different limits. For large cluster sizes (m, n ~ oo) the terms 
proportional to A(t) and B(t) are negligible, and only the third term in 
(5.2) contributes. However, at large times (t ~ or) the first term in (5.2), 
corresponding to A(t), dominates, and all three terms are important in the 
scaling limit, as we shall see in Section 6. 

Another striking difference between the present result (5.2) and 
Eq. (3.3) for the model K~=i+j  is the sign of em,(t). In (3.3) the sign is 
manifestly negative, whereas for K o = 1, the result is more complicated. If 
the cluster sizes m and n are comparable, i.e., if m/n ~ 1, then em,(t) in (5.2) 
is strictly negative for all t >  0. However, for a fixed value of m, with 
n ~ 0% it follows from (5.2) and (5.3) that 

t 2 -  4 ( m -  1) t -  12m 
em,(t) 3(2+ t) 2 nCm(t) cn(t) (n~oo)  (5.5) 

Clearly, emn(t) is negative for short times and positive for sufficiently large 
values of t. This implies that, for sufficiently large times, an excess of 
(small) m-mers is positively correlated with an excess of large n-mers. The 
explanation for this phenomenon will be given below. 

5.2. The  Probabi l i ty  D is t r ibu t ion  

The probability distribution H(~, t) for the model Ko.= 1 with a 
monodisperse initial condition again has a multivariate Gaussian form, 
with zero average and covariance matrix (( ~m ~n )), where ((~m ~, )) is given 
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by (5.4). As in Section 3.2, it is possible to derive an explicit expression for 
H({, t). (2~ The result is 

�9 j = l  

where g(x; a 2) is the one-dimensional Gaussian distribution (3.6). Further- 
more, the value of B(t) is given in (5.3b), and Vo(t) is defined as 

Vo(t) = 2(12 + 6t + t2)/[t(4 + t)(2 + t)] (5.6b) 

We note that the form of H(~, t) in (5.6) is different from the 
corresponding result (3.5) for the model K o = i + j .  Equation (5.6a) con- 
tains, apart from a delta function, representing the mass conservation law 
Zk k ~  = 0, and an infinite product of independent Gaussian distributions 
g(~k; ck), an extra factor, namely g (Z j  ~j; Vo). The extra factor imposes an 
additional restriction on the fluctuations Z j  ~j in the total number of 
clusters 5Zj mj. This restriction is very weak at short times, since Vo(t) --* oo 
as t J. 0 and becomes more serious at large times, where Vo(t ) ~ Mo(t ) ~ 2/t. 
Thus, at short times, only the effects of the mass conservation law are 
noticeable, and em~(t ) in (5.2) is negative for all m and n. At larger times 
there is an additional tendency to reduce the fluctuations in the total num- 
ber of clusters. Consequently, an excess of (small) m-mers implies that, 
most likely, several smaller clusters have combined to form a few large 
n-mers, so as to reduce the fluctuation in the total number of clusters. This 
explains why emn(t ) in (5.5), with n>>m, becomes positive for sufficiently 
large values of t. 

5.3. The cor re la t ion  Funct ions 

In order to calculate the correlation functions ~c,,~(t2, tl) with t2 >t tt 
we consider first the conditional averages ~n(t) for given initial fluctuations 
{(tl). The time evolution of these averages (n(t) is described by Eq. (2.13), 
which for the model K,7 = 1 takes the form 

d - -  
~t ~, =. Z c i ~ j - c , Z ~ - ~ - ~ M o  (5.7) 

t + j = n  j 

In order to solve Eq. (5.7), we introduce again the generating function 
Z(x, t) of ~n, which is defined in (3.9). Multiplication of both sides of (5.7) 
with (e " x -  1) and summation over all n yields a closed equation for Z(x, t), 

~ (x, t) = F(x, t) )~(x, t) (5.8) 
~t 
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where F(x, t) is the generating function (A.4) of ck(t ). Integration of 
Eq. (5.8) is elementary. The result is 

[;t ] 
Z(X, t) = Z(X, tl) exp dr F(x, ~) = )~(x, tl) T(x, t 1, t) (5.9a) 

1 

where we have introduced the notation 

T(x, tl, t ) =  [ 1 -  tl V(X)/2 ]2 / [1 -  tv(x)/2 ] 2 (5.9b) 

with v ( x ) - F ( x ,  0). In the second step of (5.9a) we have used the explicit 
form (A.20) of the generating function F(x, t). Equation (5.11) relates the 
fluctuations at time t to the initial fluctuations at time tl. 

An explicit expression for the averages r in terms of their initial 
values {(t~) can be obtained if we substitute the generating function result 
(5.9) into Eq. (3.17). One finds that ~,(t) and {(t~) are related through an 
evolution matrix Y(t, t~): 

~.(t) = ~ Y~t(t, t,) ~,(tl) (5.10a) 
l = 1  

where Ynz(t, t~) is given by 

1 ,/y r,,,(t, t,)= ~/q~ (yl_ 1) T(x, t~, t) (5.10b) 

with y-= e x. In order to calculate Ynl(t, ti), it is convenient to write (5.10b) 
in the form 

Y,l(t, t l )=Qn_l( t ,  t l ) -Qn( t ,  t~) (5.11a) 

where Qk(t, tl) is defined as 

Qk(t, t l ) _  1.q~ dy r ( x , t , , t )  (5.11b) 
Z T / / J  

For monodisperse initial conditions, where v(x)= e x -  1, one can express 
T(x, tl, t) in (5.9b) in terms of the function cOF/c~x in (A.21) as follows: 

tl tl x~ 2 x ~?F 
T(X, tl, t )= l + 2 - - ~ - e  ) e -~x(X,t) 

. tl ta x'~ 2 
= l + - ~ - g e  ) e - x  . .  t o , l t ) e  '~ 15.12) 

l = 1  
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According to (5.11b), Qk(t, tl) is the coefficient of e kx in T(x, t, tl). With 
the use of (5.12) this coefficient is readily found as 

Ok(t, t l ) =  (1 + �89 + 1)Ck+l(l ) 

--tl(l+�89189 (5.13) 

The evolution matrix Ynt(t, tl) is now determined by (5.11a) in com- 
bination with (5.13). 

The next step in the calculation of the correlation functions ~nm(t2, t~) 
is to multiply (5.10a) with Cm(tl) and to average over all possible values of 
~(tl): 

Knm(12, t l ) =  ~ Ynz(t2, t1)((r era(t1))) 
l=1 

= [Y,m(t2, tl)+Snm(t2, t l )]  Cm(tl) (5.14a) 

In the second step of (5.14a) we used Eq. (5.4) for the covariances 
((~l(tl) ~m(fl))), and we introduced the notation Snm(t2, tl) for the sum 

Snm(12, tl) ~" ~ Y,,(t2, t l )EA(t l )+B(t l ) (m+l)+C(t l )ml]  cz(tl) (5.14b) 
l=1 

A different representation of Snm is obtained if we insert into (5.14b) the 
definition (5.10b) of Y,t. The result is 

1 dy 
S,,m(t2, t l )=~i~if f-U~I(x,  tl) T(x, tl, t2) (5.15a) 

with I(x, t~) given by 

I(x,t~)= ~ [A(tl)+ B( t l ) (m+l)+C(t l )ml  ]cl(tl)(e l~-1) 
/=1 

= EA(t l)+B(t l)m] F(x, tl) 

OF -- 1] + Ea(t~) + C(tl) m] L~xx (x, tl) (5.15b) 

Equation (5.15) is a convenient starting point for the calculation of 
Snm(t2, tl). 

We consider the various terms in I(x, t 1) separately. The first term on 
the right in (5.15b), proportional to F(x, tl), gives a contribution to Snm of 
the form EA(ti)+B(tl)m ] R,(t2, tl), with R~(t2, tl) defined as 

1 
dy F(x, 11) T(x, t l ,  t2) (5.16) 
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With the use of Eqs. (A.20) and (A.21), in combination with the definition 
(5.9b) of T(x, t~, t2), R,(t2, tl) can be calculated as follows: 

-- -~ V(X) e -~x (x, t2) 

= - ( l + ~ ) ( n + l ) c , + , ( t 2 )  

tl  
+ ( l + t l )  n c . ( t 2 ) - - ~ ( n - 1 ) c . _ ~ ( t 2 )  

l[(:+,,)(t=-:,) ) (5.17) 
2 2 + t 2  ~- t2 _1 

In the second and third steps of (5.17) we used, respectively, the definition 
(A.4) of F(x, t) and the explicit form (A.23) of ck(t). Furthermore, the 
terms in I(x, tl) proportional to c3F/Ox lead to an integral of the form 

1 s dy OF(x, t l )T(x ,  tl t2) 
2rci J y" + 1 ~X 

l s d y a F  
= 27z---iJ-~Tx (x, t2) 

= nc.(t2) (5.18) 

Finally, the remaining terms in (5.15b), i.e., [ B ( t l ) +  C(t l )m],  yield an 
integral of the form (5.11b) with k = n. Combination of (5.15)-(5.18) gives 
an explicit expression for Snm(t2, tl) in (5.14b). The result is 

S,m(t:, t l ) =  [ A ( t l ) +  B( t l )m]  R,(t2, tt) 

+ [ B ( t l ) + C ( t l ) m ] [ n c , ( t z ) - Q , ( t 2 ,  t l)]  (5.19) 

where R,(t2, t~) and Qn(t2, tl) are given in (5.17) and (5.13), respectively. 
In combination with Eq. (5.14a) this gives an explicit expression for the 
two-time correlation functions Knm(t2, tl) in the model K,j= 1. 

It can readily be verified that Eq. (5.14a) for the correlation functions 
~:,,..(t2, tl) reduces to the previous result (5.4) for ((~m(tl)~n(t l)))  in the 
limit t2+tl. To see this, we note that Eq. (5.13), in combination with 
Eq. (A.23) for ck(t), implies that Qk(t~, t l )=gk0.  As a result, Ynm(t2, tt) in 
(5.11) reduces to the identity matrix as t2 + tl, i.e., 

Ynm(tl, tl) = 6nm (5.20a) 
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Furthermore, the definition (5.16) of Rn shows that Rn(tl, t l)----c,(t l) .  As a 
consequence, one finds from Eq. (5.19) that 

S~m(tl, tl) = [A( t l )+B( t l ) (m+n)+ C(tl)mn] c,(tl) (5.20b) 

Substitution of (5.20a), (5.20b) into (5.14a) immediately yields Eq. (5.4) for 
the covariances ((~m~,)), as it should. 

To obtain insight into the time dependence of the correlation functions 
lCnm(t2, t l )  in (5.14a), we consider the special case m=n, and we restrict 
ourselves to large times (t 2 ~ ~3). The diagonal elements of the evolution 
matrix Ynm(t2, t l )  with t 2 ~ (30 can be calculated from (5.11a) and (5.13). 
One finds that 

Y,~m(t2, t l )~  [--m + (t,/2) 2] era(t2) (/2 ~ ~ )  (5.21a) 

Furthermore, the matrix elements Smm(t2, t~) can be determined from 
(5.19) with the use of (5.17) for Rm(t:, t~) and (5.13) for Qm(t2, tl). 
Straightforward calculation yields the following remarkably simple result: 

Smm(t2, tl)~mCm(t2) (t 2 ~ ~ )  (5.21b) 

Combination of (5.21a), (5.21b) with (5.14a) finally gives a very simple 
expression for the autocorrelation functions tgmm(t2, tl) as t2 ~ ~ :  

~Cmm(t2, t l ) ~  (t,/2) 2 cm(tl) Cm(t2) 

~(t~/t2)2Cm(t~) (t2-~oV) (5.22) 

In the second step of (5.22) we used the explicit form of Cm(t2) , i.e., 
Eq. (A.23). The result (5.22) for the autocorrelation functions in the model 
K o = 1 differs markedly from the corresponding result (3.28) or (3.29) for 
Ku=i+ j. First, for K ~ = I  the autocorrelation functions fall off 
algebraically, rather than exponentially, as a function of t 2. Second, the 
sign of tCmm(t2, t l )  in (5.22) is positive for all possible values of m and t~. 
Thus, the crossover effect discussed below Eq. (3.29) does not occur in the 
model K,j = 1. 

6. K i j = l :  G E N E R A L  I N I T I A L  C O N D I T I O N S  

In this section we study the universal properties of the fluctuations in 
the model K~ = 1 that apply for all initial distributions rnk(0 ) (k = 1, 2,...). 
The organization of this section is the same as that of Section 4. First (in 
Section 6.1) we derive an exact expression for the factorial cumulants emn(t) 
in terms of their generating function. This result is used in Sections 6.2 and 
6.3, respectively, to calculate the asymptotic behavior em,(t ) for large 
cluster sizes (m, n ~ ~ )  and in the scaling limit. 
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6.1. The Exact Solut ion 

We start from (5.1) for emn(t), with the general initial condition (4.1), 
and we introduce again the generating functions h(x, y, t) and H(x, y, t), 
which were defined in (4.2). Along the same lines as in (4.3) and (4.4) we 
find from (5.1) an equation for H(x, y, t), 

0H 
3---f- = IF(x, t) + F(y, t)] H - F(x, t) F(y, t) (6.1) 

where F(x, t) is the generating function (A.4) of G(t). The solution method 
for (6.1) is standard. With the use of Eq. (A.20) for F(x, t), one finds the 
following result for H(x, y, t): 

H(x, y, t)=- {[1 - l t v ( x ) ] [ 1  - �89 2 V(x, y, t) (6.2a) 

where V(x, y, t) is defined as 

V(x, y, t) =~ H(x, y, O) - v(x) v(y) t 

x {1 - �88 + +  t2 (x) (6.2b) 

and H(x, y, 0) is given in (4.4b). The factorial cumulants em~(t ) can in prin- 
ciple be determined from the integral representation (4.12). 

For the special case of monodisperse initial conditions, Eq. (6.2) can 
be inverted to yield the previous result (5.2), (5.3) for emn(t ). The simplest 
way to see this is to start from Eqs. (5.2) and (5.3) and to calculate the 
corresponding generating function H(x, y, t). As the result, one finds (6.2), 
with v(x)= e x -  1. The calculations are straightforward, and can be omit- 
ted here. 

6.2. Fluctuat ions at Large Cluster Sizes (m, n -~  ~) 

The asymptotic behavior of emn(t ) at large cluster sizes can be 
calculated from Eq. (4.12), with H(x, y, t) given by (6.2). For this purpose 
it is convenient to rewrite H(x, y, t) with the use of Eq. (A.21) for the 
generating function (~F/Ox)(x, t) as follows: 

~F ~F 
H(x, y, t) = a(x, y, t) ~x (x, t) ~y (y, t) (6.3a) 

where a(x, y, t) is defined as 

a(x, y, t ) =  [v'(x) v ' (y)]  i V(x, y, t) (6.3b) 
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The dominant contribution to the integral (4.12) for large values of m and 
n comes from the poles in H(x, y, t) at the point (x, y ) =  (Xo(t), Xo(t)), 
where Xo(t) is implicitly defined by v(xo)=2/t. Therefore the leading 
behavior of emn(t) is obtained if we replace the function a(x, y, t) in (6.3a) 
with its value at the pole. Thus we find from (4.12) that for large values of 
m and n 

em,(t) ~ a(xo, Xo, t) ~ i  

OF 
• w__~ f  dw2 8xOF(x't)-ff-fiy (y ' t )  

a(xo, Xo, t) mncm(t ) c,(t) (m, n ~ oo ) (6.4a) 

The asymptotic behavior of the concentrations ck(t) as k--* oo is given in 
(A.24). 

A simplified expression for the prefactor a(xo, Xo, t) in (6.4a) can be 
obtained from (6.3b) if we use the definition of Xo(t), i.e., V(Xo)= 2It. The 
result is 

a(xo, Xo, t) = [v'(xo)] 218/3t-  v(2xo)] (6.4b) 

We remark that, for monodisperse initial conditions, Eqs. (6.4a), (6.4b) 
agree with the previous result (5.2), since in this case a(Xo, Xo, t) is equal to 
C(t) in (5.3c). 

6.3. The  Scal ing Limit  

First we consider the scaling behavior of the generating function 
H(x, y, t) in (6.3). As a definition for the "average cluster size" we choose 
again the weight-average cluster size, i.e., 

s(t) = Mz(t)/Mz(t) ~ t (t --* oo) (6.5) 

The behavior in the scaling limit of the generating functions F(x, t) and 
(8F/Ox)(x, t) is given in Appendix A. From (A.26) it follows that the factors 
(SF/Ox)(x, t) and (OF/Oy)(y, t) in (6.3a) approach a scale-invariant form in 
terms of the scaling variables Pl = -xs( t )  and P2 = -ys(t), as in (4.15), but 
now With a different scaling function O(p)= 4/(2 + p)2. A scaling form for 
H(x, y, t) is obtained if we expand a(x, y, t) in (6.3b) about x = y = 0 and 
take into account only the leading order in the scaling variables Pl and P2. 
The result is 

H(x ,y , t )  s - s ( t )  ' p lp2[ l+ l (p~+p2)+~p~pz]q / (p l )~ (p2)  (6.6) 
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This shows that the generating function H(x, y, t) approaches a scale- 
invariant form in the scaling limit, independent of the initial distribution 
ck(0). 

Equation (6.6) can readily be inverted to yield the scaling behavior of 
the factorial cumulants emn(t). The simplest way to do this is as follows. 
Consider the explicit form (5.2), (5.3) of em,(t), which was derived for 
monodisperse initial conditions. In the scaling limit, Eq. (5.2) reduces to 
the following scaling form in terms of the scaling arguments rt = m/s(t) and 
r2 = n/s( t ): 

em~(t) s s(t) 3 q~(rl, r2) (6.7a) 

with the scaling function ~ ( r l ,  r2) given by 

~(rl ,  r2) = - �89 (6.7b) 

Here ~0(r)= 4e 2r is the scaling function for the concentrations ck(t) [see 
(A.17a) and (A.27)]. It can readily be verified that the scaling form (6.7a), 
(6.7b) for emn(t) leads to the behavior (6.6) for the generating function 
H(x, y, t). Since we know that (6.6) holds independently of the initial con- 
ditions, we infer that the scaling form (6.7) is also valid for a general initial 
distribution ck(0 ). Finally, the scaling behavior of the covariances ((~m ~ ) )  
follows directly from (2.16). The result again has the form (4.21a), (4.21b), 
but now with ~p(r) and ~(rt ,  r2) given by (A.27) and (6.7b), respectively. 

7. GENERAL HOMOGENEOUS KERNELS; GENERAL INITIAL 
CONDITIONS 

Next we consider the large class of models corresponding to 
homogeneous kernels K(i,j),  i.e., reaction rates of the form (1.8a), (1.Sb). 
For such kernels, the properties of the fluctuations cannot be calculated 
exactly. However, one can study the asymptotic behavior of the covariances 
of the fluctuations in various limits. Combination of these asymptotic 
results then gives an impression of the global behavior of the fluctuations. 3 
The relevant results for the solutions ck(t) of the macroscopic law are given 
in Appendix A.3. 

The plan of this section is as follows. We start from Eq. (2.17) for 
the factorial cumulants emn(t), which, for a general kernel K(i, j), can be 
written as 

km,,(t) = Jmn(t) + Jnm(t) - K(m, n) Cm(t) cn(t) (7.1a) 

3 With the restriction that we do not consider the post-gel stage (t > to) of gelling models 
(2 > 1). See the footnote 2 in Section 1, and a remark in Appendix A.3. 
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with Jm, defined by 

K( i, j) cie,j 
i+j=m 

- em,  ~, K(m,i) G - c ~  ~ K(m,j)  e ,  (7.1b) 
i=1  j - 1  

From this equation we study first, for homogeneous kernels (1.8a)(1.8b), 
the asymptotic behavior of the covariances ( (~m~) )  in the limit of large 
cluster sizes (m, n-~ oo) and, next, the result in the scaling limit. This is 
done in Sections 7.1 and 7.2, respectively. 

7.1. F luctuat ions  at Large Cluster  Sizes (m,  n - ,  o0) 

From the exactly solvable models, we know [see (4.13), (6.4), and, in 
Ref. 1, (4.14)] that, for large cluster sizes, the factorial cumulants emn have 
the form emn ~ C ( t )  mrlCmCn, where C(t) is some function of time. Here we 
show that this asymptotic result is also consistent in general for 
homogeneous kernels of the form (1.Sa), (1.Sb). 

In order to study the behavior of emn(t) at large cluster sizes, it is 
convenient to introduce a new function amn(t), defined by 

em~(t) = am,(t) c,,,( t) cn(t) (7.2) 

The known results from the exactly solvable models suggest the following 
Ansatz for the asymptotic behavior of amn for general homogeneous 
kernels: 

am,(t) ~ mb~(t) (m --* ~ ) (7.3a) 

bn( t )~C(t )n  ( n ~ )  (7.3b) 

In addition we assume that the limits m ~  ~ and n--* ~ can be 
interchanged, so that, e.g., in the limit m, n ~ ~ with m/n fixed it holds 
that amn"~ C(t)mn. In general, bn(t) and C(t) in (7.3a), (7.3b) will depend 
on the initial conditions. 

In order to verify the Ansatz (7.3a), (7.3b), we estimate first the 
relative magnitude of the various terms in (7.1a) as m, n--* ~ .  We start 
with the left-hand side of (7.1a). From Appendix A.3 we recall that 
ck ~ k'2c~ as k ~ ~ ,  with ~(t) > 0. As a result the dominant contribution to 
Omn in (7.1a) is amn(Cms n + Omen) , SO that for large m and n the left-hand 
side of Eq. (7.1a) is given by 

LHS(7.1a) ~ emn( Om/C m + O~/Cn) 

~(rn+n)2em~ ( m , n ~ )  (7.4) 

822/49/5-6-6 
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Next we consider the right-hand side of (7.1a). The last term, i.e., 
K(m, n)CmCn, is at most of the order of emn as m, n ~  ~ ,  which is 
negligibly small compared to the left-hand side of (7.1a). Similarly, the last 
term on the right in (7.1b) is at most of the order of emn , and can be 
neglected. Consequently one finds that, for large m and n, the right-hand 
side of (7.1a) reduces to 

RHS(7.1a)~ Jmn + Jnm 

emn(Tmn/C m + Tnm/Cn) (m, n ~ ~ )  (7.5a) 

where Tm,(t) is defined as 

Tm~(t) =- Z K(i, j) cicjanJam, - Cm ~ K(m, i) ci (7.5b) 
i + j = m  j = 1  

Our task, therefore, is to show that, for amn as in (7.3a), (7.3b), Eqs. (7.4) 
and (7.5) yield the same results. 

Consider Tm,(t) in (7.5b). For  large values of n, the factor a,j/amn in 
(7.5b) reduces to bj/bm, due to our assumption (7.3a). The dominant con- 
tribution to the first term on the right in (7.5b) comes from large j values. 
For  large j and m, the factor bj/b m reduces to j/m, which can be replaced 
with �89189 It follows that Tm~(t)~m(t) as m , n ~ ,  and, 
similarly, Tnm(t ) ~ ~ ( t ) .  Substitution of these results into (7.5a) and com- 
parison with (7.4) shows that, for large m and n, both sides of Eq. (7.1) are 
identical From this result we conclude that for all homogeneous kernels of 
the form (1.8), the Ansatz (7.3) is consistent. The time dependence of b,(t) 
and of C(t) remains undetermined. 

7.2. The Scal ing Limit  

A second limit in which emn(t ) assumes a simple, universal form is the 
scaling limit, where the average cluster size diverges: s ( t )~  ~ and 
m, n ~ ~ ,  with the scaling arguments rl - m/s(t) and r2 = n/s(t) fixed. 

From Appendix A we know that, in the scaling limit (S), the concen- 
trations ck(t) approach a scale-invariant form, characterized by a scaling 
function ~o(r): 

ck(t) s s(t)-~' ~o(r); r=-k/s(t) (7.6) 

where r ' =  �89 + 3) for gelling models and r ' =  2 for nongelling models. In 
this section we show that the factorial cumulants em,(t ) also assume a 
scaling form, as follows: 

em,(t) s , s(t)-r  ~ ( r l ,  r2) (7.7) 



Fluctuations in Coagulat ing Systems. II 959 

where the value of the exponent ~ is different for gelling and nongelling 
models. We note that ~b(rl, r2) in (7.7) is a symmetric function of the 
scaling arguments r~ and r 2. Furthermore, the sign of qs(rl, r2) may be 
different for different values of r~ and r 2. An example where qS(rl, r2) does 
not have a definite sign is the scaling function (6.7b) for the model K 0 = 1. 
In this case 4~(rl, r2) is positive if r I < ~- and r 2 > (1 - q)/(1 - 4rl), or r 2 < 1 
and rl > ( 1 -  r2 ) / (1 -4 r2 )  , and negative (or zero) for all other values of r~ 
and r2. 

The value of the exponent ff in (7.7) can be determined from the 
relation (2.19b) for e,,,(t), i.e., Y~n nemn = --mCm" Substitution of the scaling 
forms (7.6) and (7.7) into (2.19b) gives 

s(t) 2--: dy yq~(rl, y ) =  - s ( t )  1 ~' rl q~(rl) (7.8) 

Comparison of powers of s(t) in (7.8) shows that ~ is related in a very sim- 
ple way to the exponent r '  in (7.6), namely 

= r' + 1 (7.9) 

As a consequence, one finds that i f=�89 5) for gelling systems (which 
correspond to 2 > 1) and { = 3 for nongelling systems (2 ~< 1). Moreover, 
one obtains a relation between the scaling functions q~(r~, r2) and ~0(r), 

ety y@(r, y ) =  dy yqb(y, r ) =  --r(p(r) (7.10) 

where we used the symmetry of q~(r~, r2). In the derivation of (7.9) and 
(7.10) it is assumed that the integrals in (7.10) converge. For  the exactly 
soluble models K~i= i + j  and K o = 1 discussed in this paper, and K o = ij 
discussed in Ref. 1, this assumption can readily be verified. 

As an immediate consequence of the scaling law (7.7) for em~(t), with 
given by (7.9), one finds that the covariances ((~m{,)), which are related 
to era,, by (2.16), also assume a scale-invariant form in the scaling limit, as 
follows: 

<<~m~n>> S S(I) ~ ~rJ(rl, r2) (7.11a) 

with 

~ ( r , ,  r2) = ~(r 1 -- r2) q~(r2) -4- ~( r  1 , r2) (7.11b) 

In the derivation of (7.11) we used that, in the scaling limit, the Kronecker 
delta in (2.16) assumes the form s(t) 1 3(r~ - r2). 
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An equation for q~(rl, r2) is obtained if we substitute the Ansatz (7.7) 
into Eq. (7.1). We consider the left-hand side and the right-hand side of 
(7.1a) separately. Substitution of (7.7) into the left-hand side gives 

LHS(7.1a) s - ~ s  ~ ~ ~ q s + r l ~ r l + r 2  (7.12) 

Similarly, we find for the right-hand side of (7.1a) 

RHS(7.1a) s sl+X_~,_:{lim lie(r1 ' r2)+i~(r2, r l)]  
e + 0  

--K(rl,  r2) (p(r,) (p(r2) } (7.13a) 

where we have defined 

re( 
1 e ) r l  

I~(r,, r2) = dy K(y, r I - y) ~o(y) q)(r 2, r I -- y) 
rl  

~ o0 

-- qb(rl, r2) dy g(rl ,  y) (p(y) 
rl  

~ oo 

-- qo(r,) dy K(rl, y) qS(r 2, y) 
rl  

(7.13b) 

We introduced the e limit in (7.13a) in order to avoid divergences occurring 
in the individual integrals for ~ = 0. Combination of Eqs. (7.12) and (7.13a) 
and use of (A.31a) for 2(t) shows that q~(r~, r2) satisfies the following 
linear, inhomogeneous, integrodifferential equation: 

( 63qb r 2 ~ r  2 - w  ~05 + rl ?-~< + 

= lim [I~(rl, r2)+ I~(r2, r l)]  - K ( q ,  r2) q~(rl) ~o(r2) 
eJ.0 

(7.14) 

where the value of ( is given in (7.9). 
Equation (7.14) for q)(rl, r2) cannot be solved exactly for general 

kernels K(rl, r2). However, one can study the asymptotic behavior of 
@(rl, r2) for large and small values of rl and r 2. The detailed behavior of 
~ ( r l ,  r2) for small values of rl and r2 is complicated and rather diverse, 
and will not be discussed here. The behavior of q~(rl, r2) at large values of 
rl and r2 is fortunately very simple. If we define c~(r a, r2) by 

~(r l ,  r2) ~ e(rl,  r2) qo(rl) qo(r2) (7.15) 
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then one can show, along the same lines as in Section 7.1, that the behavior 
of ct(r~, r2) for large values of rt and r2 is given by 

e(rl ,  r2) ~ rl/~(r2) (rl ~ oo) (7.16a) 

with 

/?(r2) ~ vr2 (r2 --* oe ) (7.16b) 

Clearly, Eqs. (7.15), (7.16a), and (7.16b) are the analog in the scaling limit 
of the behavior (7.2), (7.3a), and (7.3b) at large cluster sizes. This shows 
that the results from the scaling theory are in agreement with the behavior 
in the limit m, n ~ o% i.e., that both limits have overlapping regions of 
validity. 

8. D I S C U S S I O N  A N D  S U M M A R Y  

In this paper we applied van Kampen's f2-expansion to a master 
equation describing coagulation in finite, spatially homogeneous systems. 
From the leading order in the expansion we find that the concentrations 
ck(t) satisfy the macroscopic law (1.4), which is known as Smoluchowski's 
coagulation equation. The next order in the expansion yields a linear 
Fokker-Planck equation for the probability density H({, t) of the 
fluctuations { = (41, 42,...) in the numbers of clusters of size k = 1, 2,.... The 
solution of the Fokker-Planck equation is completely determined by the 
covariance matrix of the fluctuations, i.e., -~n = ((4,~ ~n ))- 

We start the discussion with some critical comments on the method of 
this paper. We recall (L2) that the validity of the Gaussian approximation, 
and hence of the Fokker-Planck approach, has been proved by Kurtz (2I) 
for a finite number of reactants and a f ixed time interval [0, T]. Obviously, 
this result is not applicable to the models considered in this paper, since in 
our case the number of reactants, i.e., the number of variables 4k, is 
infinitely large. Nevertheless, Kurtz's proof is of interest, since it 
demonstrates very clearly the limitations of our approach: the predictions 
from the Fokker-Planck equation are inaccurate at large cluster sizes 
(k > kM) and at large times (t > tM), where the cluster size k~t and the time 
tM depend upon the size of the system. The consequences of these 
inaccuracies will be discussed first for large cluster sizes and then for large 
times. 

The limitations of our approach at extremely large cluster sizes 
(k > M) are obvious. In the master equation such clusters cannot occur, 
whereas in the Fokker-Planck equation their occurrence is not excluded a 
priori. As a result, the moments of m k (k=  1, 2,...), as described in the 
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Fokker-Planck approach, also contain contributions from unphysically 
large clusters, of size k > M: 

k~mk~- M k~ck + M ~/2 k ~  + ... (8.1) 
k = l  k 1 k 1 

Fortunately, the contributions on the right-hand side from clusters of size 
k > M are exponentially small, of the order of CM(t), much smaller therefore 
than the error made in neglecting the terms of order M 1/2 in the expan- 
sion of the master equation, i.e., Eq. (2.5). This justifies a posteriori the 
introduction of additional variables ck and ~ with k > M. 

More seriously, the Gaussian (or Fokker-Planck) approximation 
breaks down if the predicted number of k-mers, i.e., 

( m k )  ~- Mck(t) (8.2a) 

is of the order of unity. As a result of (A.28), this happens if the cluster size 
k is of the order of k M ( t ) -  ]z(t)h-1 log M. For such clusters the size of the 
fluctuations in m~ is given by 

((m2)) 1/2 ~ (M((~2))) I/2 _ [Mck(t)] 1/2 (8.2b) 

which is of the same order of magnitude as the average value (mk)  in 
(8.2a). It follows that the Gaussian approximation is invalid if k>kM(t ) .  
However, the contribution of clusters of size k >kM(t)  to the moments 
5~k k~mk in (8.1) is of relative order M -~, and hence negligibly small com- 
pared to the fluctuations, which are of relative order M ~/2. We conclude 
that, although our description of large clusters, of size k > kM(t), is inade- 
quate, the error made is negligibly small. A further conclusion is that the 
result (8.1), which is accurate to relative order M -~/2, cannot be improved 
by taking into account higher order terms in the f~-expansion (2.5). This 
can be seen from (8.2). Equation (8.2) shows that, in our case, the s 
expansion is not an asymptotic expansion in powers of the inverse system 
size M -~, but rather, for each cluster size k, an expansion in terms of 
[Mck(t)] 1. Thus, higher powers of M -1 in (2.5) correspond to higher 
powers of [Mck(t)] -~ in (8.2), and any finite number of terms in this 
expansion is inadequate for clusters of size k~-kM(t) ,  where 
[Mc~(t)] i ~ 1. As a consequence, the error in (8.1) is always of relative 
order M 1. This argument shows that in our case the s is not 
what it usually is(2): a systematic expansion in powers of a small parameter. 

Next we show that the fluctuations become important at large times in 
nongelling models and near the gelpoint in gelling models. For this purpose 
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we consider again the moments 52k k~m~ introduced in (8.1). As a measure 
for the relative magnitude of the fluctuations, we consider the ratio 

(8.3) 

For large M, the value of R(t) can be expressed in terms of the concen- 
trations c~ and the fluctuations ~k as follows: 

R ( t )  ~ M -1 2 k~P (( ~k~-z))/(M~) 2 (8.4) 
k.l 

where M~(t) is the ~th moment of ck(t). Thus, R(t) is always small, of the 
order of M - l ,  as M ~ oo with the time t kept fixed. However, for a fixed 
value of M, R(t) becomes large in the scaling limit, where the average 
cluster size diverges [s(t) --, oo ]. With the use of the scaling behavior (7.11) 
for ( ( ~ l ) )  and (A.30) for Ck(t), we find that for large values of s(t), 
Eq. (8.4) reduces to 

R ( t ) ~ C ~ M - i [ s ( t ) ]  ~'1 [s(t)-,  oo] (8.5) 

where Ca is some constant. In the derivation of (8.5) we have approximated 
the sums in (8.4) by integrals, which is allowed if :~> r ' - 1 .  The fluc- 
tuations in the moment Z~ k~mk become important as soon as R ( t ) >  1. 
According to (8.5), this happens if t>  tu ,  where the time tu  is defined by 

S(tM ) ~ ml / ( z  ' l) (8.6) 

We conclude that for t>  tM the fluctuations are not small, so that the 
Fokker-Planck approach becomes invalid. From a physical point of view, 
the importance of the fluctuations at t ~- tM is quite obvious. The main con- 
tribution to (8.5) comes from large clusters, of size k >~ s(t), and the number 
of such clusters is small, of the order of unity, for t ~ tM. This can be seen 
from (A.30). 

We specify the result (8.6) for gelling and nongelling models, respec- 
tively. In gelling models, which correspond to 2 > 1 in (1.8a), we know from 
Appendix A that T'= �89 3). Moreover, it follows from Eq. (A.31a) that 
s(t) diverges proportional to (t e -  t) 2/(2-1)as t? t C. As a consequence we 
find that the fluctuations in gelling models become important if t ~-tM, 
where tM lies very close to the gelpoint to: 

( tc_ tM)~_M-~X 1)/~.+1) ( 2 > 1 )  (8.7a) 

In nongelling systems (2~< 1), where r ' = 2 ,  it follows from (8.6) that 
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fluctuations become important if t "-, tM, with s(tM) = M. For models with 
)~ < 1, this corresponds to 

t M ~ M  ~ ~ ()~< 1) (8.7b) 

due to (A.31a). The results for nongelling models with 2 =  1 are slightly 
more complicated. One finds that t M ~ l o g M  if 2 =  1 and # = 0 ,  and 
t M -~ (log M) 2 if ,~ = 1 and # > 0. (~3) 

Next we discuss the relationship between the probability distribution 
P(m, t) in the master equation and the probability density H({, t) in the 
Fokker-Planck equation. From the discussion of large cluster sizes it will 
be clear that P(m, t) and H({, t) are not simply identical or proportional. 
The correspondence between them is more complicated. Since the 
discrepancy between the results from the master equation and the 
Fokker-Planck approach becomes apparent only at large cluster sizes, it is 
natural to sum over the large clusters in order to obtain a description in 
terms of small clusters only. For this reason we consider the marginal 
probability density Hr(~ ~), t), which is defined as 

Hr(r It), t) -= f f l  d~j//(r t) (8.8a) 
j > r  

and compare it to the marginal probability P~(m (~), t) that the numbers of 
clusters of size k ~< r are given by m (~) = (ml,..., mr), i.e., 

P~(m ~', t )= ~ P(m, t) (8.8b) 
{mk;k > r} 

The relationship between Pr(m ('), t) and /7r(r (r), t) for large M is simply 
given by 

P~(m Ir), t )=M-r/ZHr(r (r), t )+ ...  (M-~ oo) (8.9) 

Possible correction terms on the right-hand side are of relative order M ~/2 
as M-o  ~ .  The factor M -r/2 guarantees that Hr(~ ~r,, t) is properly nor- 
malized. In conclusion: the relation between P(m, t) and H(~, t) is that for 
each finite value of r, the marginal probability distributions are related by 
(8.9) as M ~  oo. We remark that Eq. (8.9) represents a generalization of 
Kurtz's theorem to systems with an infinite number of reactants. It would 
be of interest if this result from the O-expansion could be proved 
rigorously. 

The role of the factorial cumulants emn(t ) in this paper is more com- 
plicated than in Ref. 1. For K 0 = O" we found r that e,~n reflects the influence 
of the conservation law for the total mass, Zk kmk = M. The same con- 
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clusion holds for the model K~ = i +  j considered in this paper. The inter- 
pretation of em,(t ) for K9 = i + j is particularly clear in the exact solution r 
of the master equation with a monodisperse initial condition. The exact 
solution shows that P(m, t) is a product of Poisson distributions for the 
occupation numbers mk and a Kronecker delta representing mass conser- 
vation. Without the Kronecker delta, the factorial cumulants would vanish. 
Hence em,(t ) can be interpreted, also for K•= i+j ,  as a reflection of the 
conservation law for the total mass. The fact that em,(t ) is negative (sub- 
Poisson statistics) for all m and n and all t > 0 simply means that an excess 
of m-mers implies that, most likely, there will be fewer n-mers, i.e., 
(3,,)  < 0. For general initial conditions the exact solution of the master 
equation(1.1) is not known, and the argument given above for 
monodisperse initial conditions breaks down. Nevertheless, one finds that 
the sign of emn is negative in the limit of large cluster sizes and in the 
scaling limit. This can be seen from Eqs. (4.13) and (4.20), respectively. 
Note that the factor H(x~, x], 0) in (4.13) is negative. This follows from 
(4.1), (4.2b), and the fact that x~ is positive. 

The interpretation of the factorial cumulants e,~,(t) for the model 
K~j= 1 is more difficult. The exact solution of Bayewitz etal. (4) is not 
simply a product of Poisson distributions for mk multiplied with a 
Kronecker delta for the total mass. Hence it is not obvious that the fac- 
torial cumulants should be negative, and in fact we know from Section 5.1 
that em~(t ) may be positive for some combinations of m, n, and t. An 
explanation for this phenomenon is given in Section 5.2. Qualitatively, the 
same explanation applies for Ko= 1 and general initial conditions. This 
follows from the fact that em,(t ) becomes independent of the initial con- 
ditions in the scaling limit, as demonstrated by Eq. (6.7). A simple inter- 
pretation of em,(t ) for general homogeneous kernels has not been found. 

At the level of the macroscopic law there exists a mapping ~22) between 
the two exactly soluble models K U = i + j and K~j = 0. The mapping can be 
formulated as follows: if c~(t) is the solution of Smoluchowski's equation 
with the initial condition ck(0) and rate constants K0= i +  j, then 

ak(t)-= k lCk(t*)/Mo(t* ) (8.10) 

with Mo(t)=Z~ck( t )  and t * : - l o g [ 1 - t / M o ( O ) ]  is the solution for 
K~= ij and 6k(0)=k-lck(O)/Mo(O). As a result of (8.10), the conservation 
law (2.19b) immediately implies that there also exists a relation between 
the factorial cumulants in the two models, namely 

~, nYm,(t ) = rn 1 ~ nem,(t.)/Mo(t.) (8.11) 
n 11 



966 van Dongen 

However, it can be shown with the use of the generating functions of Ymn 
and emn that a more detailed relation between these cumulants does not 
exist. Thus, it appears that a simple mapping between both models is 
possible only at the level of the macroscopic law. 

A particularly simple form for the factorial cumulants era, was found 
for the models K~ = i + j and K~ = 0 (with t < to; see Ref. i) if the initial 
conditions are monodisperse. In this case emn(t) assumes the form 

e,,n( t ) = -mncm( t ) c,( t )/ m2( t ) (8.12) 

The factor [M2( t ) ] -  1 guarantees that e,,,, satisfies Eq. (2.19b). Which other 
kernels lead to the simple form (8.12) for emn ? This question is investigated 
in Appendix B. We find that (8.12) i~ an exact solution of Eq. (2.17), with a 
monodisperse initial condition, for all kernels K~ that are linear in the 
following sense: 

Ko.= iBj+jBi  (8.13) 

The constants Bj in (8.13) satisfy the restriction Bjj<~ const as j--* oo. For 
all linear models (8.13), it can be shown (z~ that the probability distribution 
H({, t) is given by (3.5) if e' is replaced with (M2) 1/2. Furthermore, if for 
large values of j, Bj is homogeneous (Bj~j ; ' - I ) ,  then em,(t) approaches a 
scaling form in the scaling limit, with the scaling function q~(rl, r2) given 
by 

qS(rl, r2)= -rlr2q~(rl) ~(r2) dy y2q~(y) (8.14) 

Here ~0(r) is the scaling function for ck(t); see (7.6). The interpretation of 
the factorial cumulants given for K 0 = i + j  and K,j = 0 is in general valid 
for all linear models (with the restriction t < tc in gelling models). In all 
cases the fluctuations obey sub-Poisson statistics. 

From a physical point of view, one of the most interesting phenomena 
encountered in this paper is the scaling behavior of the fluctuations for 
general homogeneous kernels (see Section 7). It is of interest to consider 
possible extensions of this behavior to other fields and experimental 
verification. We mention two possible applications. The first is percolation 
theory. For instance, in Monte Carlo simulations of bond percolation, one 
starts {2sJ from a large but finite lattice with M sites and considers the num- 
bers ink(p) of clusters of size k, where p is the probability that a bond has 
formed. In these simulations one observes {2s) that the concentrations 
ce(p)- -mk(p) /M approach a scale-invariant form, very similar to (7.6), 
near the critical point Pc. This phenomenon is observed also in the case of 
site percolation. 
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Thus, there is a complete analogy between the scaling behavior in 
percolation theory and in the present mean field approach, at least at the 
macroscopic level. For this reason we expect that scaling behavior of the 
fluctuations also occurs in percolating systems near their critical point. It 
would be interesting if this conjecture could be proved or disproved. A 
second field where the scaling law (7.7) could be tested is computer 
simulation of cluster-cluster aggregation processes. In this case the scaling 
behavior of the concentrations has been demonstrated by Meakin et al. (a4) 
It would be of interest if the present scaling theory for the fluctuations 
could be verified experimentally in such systems. 

Before closing this paper, we summarize the main results. We have 
studied the properties of the fluctuations for a large class of coagulation 
models that includes most models used in the literature. (8'9~ Special atten- 
tion has been paid to two exactly soluble models, corresponding to the 
choices K~i = i + j and K 0 = 1 for the rate constants in the master equation 
(1.1). For these models and monodisperse initial conditions, we obtained 
explicit results for the covariances ((~m(t)~,(t))),  for the probability 
distribution H(g, t), and for the two-time correlation functions 
(~m(tl)~,,(t2))). For general initial conditions we found an exact 
expression for the generating function of the covariances ((~m(t)~n(t))). 
From this exact expression we calculated the asymptotic behavior of 
((~m(t) ~,,(t))) at large cluster sizes (m, n ~  oo) and in the scaling limit. 
With the use of these results for the models K~j = i + j and K,j -= 1 and the 
results for Kij= 0", (1/ it was possible to determine the asymptotic behavior 
of the covariances for general homogeneous kernels of the form (1.8). One 
finds that the factorial cumulants em~(t), which are related to the covarian- 
ces as e,~,,= ((~,,~n)) --OmnCn, a r e  given for large values of m and n by 
era,, ~ C(t)mncmc,. Furthermore, we found a novel scaling behavior of the 
fluctuations in the scaling limit, where the average cluster size s(t) diverges. 
In this limit emn approaches a scale-invariant form, as follows: 

S e,~,, , s(t) ; cl)(m/s(t), n/s(t)) 

The exponent ~ is related in a simple way to the degree of homogeneity of 
the rate constants, namely ~ = 3  for nongelling models (2~< 1) and 

= �89 + 5) for gelling models (2 > 1). We also derived an equation for the 
scaling function qs(rl, r2) and we determined its shape at large values of rl 
and r2. 

A P P E N D I X  A 

In this Appendix we summarize some relevant results for the solutions 
ck(t) of the macroscopic law (1.4). We discuss first the results ~ for the 
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models K~=i+j and /(,..1.= 1, and then some results for general 
homogeneous kernels of the form (1.8). The models Ku= i+j  and K~= 1 
have been solved for general initial conditions by Golovin C14) and 
Melzak, (~5) respectively, but we have chosen a slightly different presen- 
tation that is better suited for our purposes. The results for general 
homogeneous kernels are taken from Refs. 13, 17, and 18. 

A1. K~j=i+j 
We start with the 

equation takes the form 
model Kij=i+j, for which Smoluchowski's 

8k=�89 ~ (i+j) cicj-(kMo+l)Ck (A.1) 
i + j = k  

Here M 0 is the zeroth moment of c~(t). In general, the nth moment M~(t) of 
the cluster size distribution is defined as 

M~(t)= L k"ck(t) (A.2) 
k = l  

and the first few moments can readily be calculated from (A.1) as 

Mo(t)=Mo(O)e '; Ml(t)  = 1; M2(t)=M2(O)e 2' (A.3) 

From the fact that the sol mass Ml(t)  is conserved for all t ~> 0 we infer that 
for K 0 = i +  j, gel formation does not occur, i.e., that this model is a non- 
gelling model 

In order to solve Eq. (A.1) for general initial conditions, we introduce 
the generating functions 

f (x , t )= ~ ck(tlekX; F(x,t)= ~ ck(t)(ek~--l) (A.4) 
k - - 1  k = l  

An equation for f (x ,  t) is obtained if we multiply (A.1) with e kx and sum 
over all k. The result is 

8t = ( f -  Mo) (A.5) 

Subtraction from (A.5) of the equation for the zeroth moment, i.e., 
/I;/o = - M o ,  gives 

OF F(Sxx F 1) (A.6) 
8t 
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Equation (A.6) can be solved with the method of characteristics. As a result 
one finds that F(x, t) is implicitly determined by 

F(x, t )=e - tu ( z ) ;  z(x, t ) -  F(x, t ) -  x (A.7) 

The function u(x) in (A.7) is determined by the initial condition 
v(x) = F(x, 0). In Sections 3 and 4 we also need an expression for the par- 
tial derivative OF/Ox of F(x, t). Differentiation of (A.7) with respect to x 
gives 

OF u'(z) 
0----s (x, t) - u ' ( z ) - e  - - - - - - -~t  (A.8) 

It follows from the definition (A.4) that Of/#x is also equal to the right- 
hand side of (A.8). 

For  the special case of monodisperse initial conditions, ck(0 ) = c~1, the 
concentrations ck(t) can be calculated explicitly. In this case the initial con- 
dition is v(x) = F(x, 0) = e x - 1. As a consequence one finds from (A.7) that 

x = F -  z = F--  # F  + log( 1 + e'F) (A.9a) 

or, in terms o f f ( x ,  t), 

x = f -  e~C+ log(e~') + 1 - e - '  (A.9b) 

In general the concentrations ck(t) can be calculated from the following 
contour integral: 

kCk(t) = ~ f~ dy #f  (x, t) 1 df 
2gi~fyk+l~x  = ~g/. f ~-~ (A.10) 

where we have defined y =  e x. The integration path in (A.10) circles the 
origin y = 0  once in the counterclockwise direction. For  monodisperse 
initial conditions we can use (A.9b) and the definition y = e x to calculate 
the integral in (A.10) explicitly. The result can be written as 

k k-  1 
ck(t) = (1 - z ) - ~ .  (re ~)k (A.11) 

where we have introduced a new time variable r(t) - 1 - e - ' .  
We consider again the result (A.7) for general initial conditions. 

Equation (A.7) or (A.8) can be used to calculate the asymptotic behavior of 
the concentrations ck(t) in the limit of large cluster sizes (k ~ oo) and in 
the scaling limit [where k ~ o% and the average cluster size s(t) ~ oo, with 
the ratio k/s(t) fixed]. 
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First we discuss the results in the limit k --+ 0o. The large-k behavior of 
ck(t)  can be calculated from the contour integral (A.10) with the use of the 
saddlepoint methodJ 16) It follows from (A.8) that the functions x(f,  t) and 
y ( f ,  t ) =  e x(f'~ have a saddle point at x , ( t )  or y , ( t ) ,  where xs is implicitly 
determined by 

u'(Zs) - e'; Xs - F(xs ,  t) - z s = e - ' u ( z ~ )  - Zs (A.12) 

and ys = e xs. Accordingly, we choose the contour in (A.10) along the circle 
f = f s ( t )  e i~', where fs is defined by f s ( t )  - f ( x s ( t ) ,  t), and -re < ~0 ~< re. If we 
expand x(f,  t) in a Taylor series about f = f s ,  

x ( f ,  t ) = x s ( t ) + � 8 9  . . .  ( f - -+f~)  
(A.13) 

= xs( t  ) - �89 + . . .  (~p --+ O) 

and calculate the integral in (A.10) for large values of k, we obtain the 
following result for ck(t)  as k--+ c~: 

c~(t) ~ [ - 2 r e e - ' u " ( z ~ ) ] - l / 2  k 3/2e kxs(t) (k  --+ o0) (A.14) 

Note that it follows from differentiation of (A.7) for t = 0 that u"(z , )  < O. 
Next we consider the scaling-limit (S), where the average cluster size 

diverges: s(t)  --+ oo and k --+ o% with the ratio k / s ( t )  fixed. As a definition of 
the "average cluster size" we choose s ( t ) =  M2(/), but different choices for 
s(t)  would change only numerical values and not the essence of the results. 
In the scaling limit one finds from (A.7) that the generating function F(x ,  t) 
approaches a scale-invariant form in terms of the scaling variable 
p = - x s ( t )  as follows: 

F(x,  t) s - s ( t )  ~[(1 +2p)  ~/2- 1] (A.15) 

Similarly, one finds a scaling function for the partial derivative OF/ax, 
namely 

0--F(x, t) s (1 +2p)  l/2~l]/(p) (a.16) 
ax 

The scaling results (A.15) and (A.16) in terms of generating functions can 
readily be inverted to yield an expression for c~(t). One finds that 

ck(t) s s(t) 2 ~o(r); r -  k/s(t)  

where the scaling function q~(r) is given by 

q~(r) = (2~z) i/2 r-3/2e-r/2 

(A.17a) 

(A.17b) 
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The results (A.I5)-(A.IT) obtained in the scaling limit do not depend on 
the initial conditions. 

A2.  Kii = 1 

We start from Smoluchowski's equation for the model K~ = 1: 

~k= 1 ~ c ic j - -ckmo (A.18) 
i + j - - k  

with Mo defined in (A.2), and we introduce again the generating functions 
f ( x ,  t) and F(x, t) defined i n  (A.4). For F(x, t) one finds the following 
differential equation: 

OF/~?t = �89 2 (A. 19) 

which is to be solved with the general initial condition F(x, O)= v(x). The 
solution is 

F(x, t) = v(x)/[1 - �89 (A.20) 

We also need an expression for the x derivative of F(x, t) or f ( x ,  t). From 
(A.20) one finds that 

#F (x, t )= Of (x, t )= v'(x) 
O--~ ~xx [1 - �89  2 (A.21) 

Furthermore, the first few moments of ck(t) can readily be calculated from 
(A.18). The result is 

Mo(t) = l i t +  1/Mo(0)]- ' ;  Ml(t)  = 1; M 2 ( t ) = M z ( O ) + t  (A.22) 

Since the sol mass is conserved for all times, we conclude that K,j = 1 is 
also a nongelling model. 

An explicit result for the concentrations ck(t) can readily be found if 
the initial distribution is monodisperse, i.e., if v(x)= e x -  1. In this case 
calculation of the integral in (A.10) with OF/Ox given in (A.21) yields 

ck(t)= (1 + t /2) -2[ t / (2+ t)] k i (A.23) 

For this special case it follows from (A.22) that Mo( t )=  (1 +t /2)  -1 and 
M2(t) = 1 + t. 

We again consider Eq. (A.20) for general initial conditions. For 
general ck(0) it is not feasible to calculate c~(t) explicitly. However, one can 
calculate the asymptotic behavior of c~(t) for large cluster sizes and in the 
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scaling limit. The large-k behavior of ck(t) can be determined from (A.10) 
with ~f/Ox given in (A.21). The dominant contribution to the integral in 
(A.10) as k ~ ~ comes from the pole at x = Xo(t), where Xo(t) is implicitly 
defined by V(Xo)= 2/t. Expansion of the integrand in (A.10) about Xo(t) 
gives(16,17) 

c~(t) ~ 4[t2v'(xo)] 1 e-kX~ (k ~ ~ )  (A.24) 

Next we consider the scaling limit. In this case one finds from (A.20) that 
the generating function F(x, t) approaches a scale-invariant form in terms 
of the scaling variable p = -xs( t ) :  

F(x, t) s - s ( t ) - l [ 2 p / ( 2  + p)]  (A.25) 

In the derivation of (A.25) we have chosen s(t) - M2(t), and we have used 
that v ( 0 ) = 0  and v ' (0)=  1. Similarly, it follows from (A.21) that 

0F s 4 (A.26) 
~xx (x, t) ' (2 + p)------5 

The results (A.25) and (A.26) obtained in the scaling limit can readily be 
inverted to yield an expression for the cluster size distribution ck(t). One 
finds that ck(t) approaches a scaling form as in (A.17a), with ~p(r) given by 

~o(r) = 4e =2r (A.27) 

A different choice for the "average cluster size" s(t) would change only the 
numerical values (length scales) in (A.25)-(A.27), and not the functional 
forms. 

A3. General  H o m o g e n e o u s  Kernels 

Next we summarize some results concerning the asymptotic structure 
of solutions ck(t) of Smoluchowski's equation for homogeneous kernels of 
the form (1.8a), (1.8b). 

We start with a comment on the possible occurrence of a gelation 
transition. It can be shown ~13) that a gelation transition occurs if the degree 
of homogeneity in (1.8a) satisfies 2 > 1 and is absent otherwise (2 ~< 1). The 
gelpoint tc in gelling systems is characterized by a divergence of the 
moments Mn(t), with n >~2, and by the onset of gel formation. In non- 
gelling systems the moments Mn(t) remain finite and gel formation does 
not occur. In this paper we consider gelling systems only for t < tc and non- 
gelling systems for all times t ~> 0. 
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The large-k behavior of c~(t) has been calculated in Ref. 17 for 
homogeneous kernels with an exponent v < 1, and in Ref. 18 for kernels 
with v = 1. The definition of v has been given in (1.Sb). In all cases one 
finds that ck(t) falls off exponentially, with an exponent z( t )< 0 and a 
prefactor Ak(t) that varies more slowly than exponentially, i.e., 

ck(t)=Ak(t)e~Z~'); lim [ k - l l o g A k ( t ) ] = O  (A.28) 
k ~ o o  

Depending on the initial conditions, the solutions may have a universal or 
a transient form. Universal solutions have the same form as scaling 
solutions for large values of the scaling argument r (see below). For  v < 1 
one finds that for large cluster sizes 

f2 k , dx K(x, 1 - x)[x(1 - x)]  -~ (A.29) Ak( t )~a2( t )  -~" a t=�89 

The universal behavior for models with v = 1 is infinitely more diverse (18) 
and will not be discussed here. In all cases it follows from (A.28) that 
?k~k2ck as k ~  oo. For special initial conditions one finds transient 
solutions, different from (A.29), that cross over to a universal form after an 
initial period of time. In this paper, therefore, we restrict ourselves to the 
universal form. 

Finally we consider the behavior of the solutions ck(t) in the scaling 
limit, where the average cluster size s(t)--, oo and k--* o% with the ratio 
r = k/s(t) fixed. The scaling limit refers to the limit t --* t,. in gelling systems 
(2 > 1) and to t --, oo in nongelling systems. In the scaling limit, the concen- 
trations ck(t) approach a scale-invariant form, or scaling form(~3~: 

ck(t) s s(t) ~' cp(r); r - k / s ( t )  (A.30) 

with r ' =  2 in nongelling systems and r ' =  1(2 + 3) in gelling systems. Sub- 
stitution of the Ansatz (A.30) into Smoluchowski's equation gives first an 
equation for s(t), 

= W S  2 + 2 - z '  (A.31a) 

and next a nonlinear integrodifferential equation for the scaling function 
q)(r): 

--w(r'(p(r) + r~o'(r)) 

dx K(x, r - x) (o(x) p(r - x) = l i m [ l f l  l - ' ) r ~ t o  

-~o(r) f ~  dx K(r, x) q~(x)] (A.31b) 

822/49/5-6-7 
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The constant w in (A.31a), (A.31b) is a separation constant for the r and t 
dependences. The e timit in (A.31b) is necessary to exclude possible 
divergences in the individual integrals on the right-hand side. The form of 
the scaling functions q~(r) for general homogeneous kernels has been 
studied in Ref. 13. For the details we refer to this work. 

A P P E N D I X  B 

In this appendix we investigate which models lead to the same simple 
form (8.12) for the factorial cumulants emn(t) as was found for the models 
Ko= i + j  and K~=/j .  To answer this question, we note first that (8.12) is 
possible only if the system starts from a monodisperse initial distribution. 
This may be seen from comparison of (8.12) for t = 0  and the initial 
condition (4.1) for emn(t). 

TO determine which rate constants lead to factorial cumulants of the 
form (8.12), we substitute the Ansatz (8.12) into Eq. (2.17), with Akj given 
in (2.11a). One finds that 

mn2f /12=(n~jKmjQ+m~jKnf j )  M2-Km~(M2) 2 (B.I) 
J J 

An equation for Jl~r 2 is found by multiplying Smoluchowski's equation (1.4) 
w i t h  k 2 and summing over all k. The result is 

~I 2 = ~ ijKo.cie j (B.2) 
i , j  

From (B.1) it follows immediately that the rate constants K,,, have the 
form 

Kmn = mB, + nBm (B.3) 

where the constants B, are defined as 

B. - ~ jK~FJM 2 - �89 M2) 2 (B.4) 
J 

Thus, if emn has the form (8.12), then necessarily K,~n is of the form (B.3). 
Conversely, for all kernels Kmn of the form (B.3), one finds with the use of 
(B.2) that (B.4) reduces to an identity. We conclude that all rate constants 
of the form (B.3), and only such rate constants, lead to (8.12). The only 
restriction is of course that unphysical rate constants, with B,/n ~ o~ as 
n ~ oc, are excluded. For such kernels pre-gel solutions ck(t) do not exist, 
i.e., gelation occurs instantaneously3 TM 

Models of the form (B.3) have been called linear models by 
Lushnikov. (5) For such kernels and monodisperse initial conditions, 
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Lushnikov gives a partial solution of the master equation (1.1). The result 
has the form (B.1), where a~(t) can be calculated recursively by 
quadratures. Similarly, the macroscopic law (1.4) can be solved recursively, 
as has been shown in Ref. 26. 
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